Angharad P. Davies
Swansea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angharad P. Davies.
Experimental Parasitology | 2010
Rachel M. Chalmers; Angharad P. Davies
Cryptosporidium has emerged as an important cause of diarrhoeal illness worldwide, especially amongst young children and patients with immune deficiencies. Usually presenting as a gastro-enteritis-like syndrome, disease ranges in seriousness from mild to severe and signs and symptoms depend on the site of infection, nutritional and immune status of the host, and parasite-related factors. Sources and routes of transmission are multiple, involving both zoonotic and anthroponotic spread, and facilitated by the resistance of the parasite to many commonly used disinfectants. Prevention and control measures are important for the protection of vulnerable groups since treatment options are limited. This review covers the life cycle, pathogenesis, clinical presentations, diagnosis, prevention and management of cryptosporidiosis in humans.
Thorax | 2004
M C Ruddy; Angharad P. Davies; M D Yates; S Yates; S Balasegaram; Y Drabu; B Patel; Stefan Lozewicz; S Sen; M Bahl; E James; Mci Lipman; G Duckworth; John Watson; M Piper; Francis Drobniewski; H Maguire
Background: A description is given of a major outbreak of isoniazid monoresistant tuberculosis (TB) chiefly in north London, including prisons. The earliest case was diagnosed in 1995 with most cases appearing after 1999. Methods: Confirmation of a local cluster of cases was confirmed by restriction fragment length polymorphism (RFLP IS6110) typing or “rapid epidemiological typing” (RAPET). Further cases were found by retrospective analysis of existing databases, prospective screening of new isolates, and targeted epidemiological case detection including questionnaire analysis. Results: By the end of 2001, 70 confirmed cases in London had been linked with a further 13 clinical cases in contacts and nine epidemiologically linked cases outside London. The epidemic curve suggests that the peak of the outbreak has not yet been reached. Cases in the outbreak largely belong to a social group of young adults of mixed ethnic backgrounds including several individuals from professional/business backgrounds. Compared with other cases of TB reported to the enhanced surveillance scheme in London during 1999–2001, the cases are more likely to be of white (26/70 (37%) v 1308/7666 (17%)) or black Caribbean ethnicity (17/70 (24%) v 312/7666 (4%)), born in the UK (41/70 (59%) v 1335/7666 (17%)), and male (52/70 (74%) v 4195/7666 (55%)). Drug misuse and/or prison detention are factors common to many cases. Conclusions: The investigation of the outbreak revealed significant problems on an individual patient and population based level including difficulties with contact tracing, compliance, and the risk of developing multidrug resistance. This incident has demonstrated the value of molecular strain typing in investigating an extensive outbreak of TB. This is the first documented outbreak involving a UK prison.
Pediatric Infectious Disease Journal | 2009
Angharad P. Davies; Brian M. Campbell; Meirion Rhys Evans; Angie Bone; Anita Roche; R. M. Chalmers
Point prevalence of Cryptosporidium and Giardia carriage among 230 asymptomatic preschool children attending day-care facilities was 1.3% (95% CI: 0.3%–3.8%) for each parasite, with no dual infections. Cryptosporidium oocysts were detected by immunomagnetic separation and immunofluorescence microscopy and genotyped: one isolate was Cryptosporidium hominis, the other 2 being skunk and cervine genotypes, rarely found in symptomatic human infection.
Environmental Health | 2011
Stephanie L. Hinder; Graeme C. Hays; Caroline J. Brooks; Angharad P. Davies; Martin Edwards; Anthony W. Walne; Mike B. Gravenor
The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental.
Journal of Medical Microbiology | 2010
Leanne Jukes; Jane Mikhail; Naledi Bome-Mannathoko; Stephen J. Hadfield; Llinos G. Harris; Khalid El-Bouri; Angharad P. Davies; Dietrich Mack
This study evaluated a multiplex real-time PCR method specific for the mecA, femA-SA and femA-SE genes for rapid identification of Staphylococcus aureus, Staphylococcus epidermidis and non-S. epidermidis coagulase-negative staphylococci (CoNS), and meticillin susceptibility testing directly in positive blood cultures that grew Gram-positive cocci in clusters. A total of 100 positive blood cultures produced: 39 S. aureus [12 meticillin-resistant S. aureus (MRSA), 31% of all the S. aureus]; 30 S. epidermidis (56.6% of the CoNS), 8 Staphylococcus capitis (15.1%), 3 Staphylococcus saprophyticus (5.7%), 4 Staphylococcus hominis (7.5%), 3 Staphylococcus haemolyticus (5.7%), 2 Staphylococcus warneri (3.8%), 1 Staphylococcus cohnii (1.9%) and 2 unidentified Staphylococcus spp. (3.8%); and 1 Micrococcus luteus in pure culture. Two blood cultures had no growth on subculture and five blood cultures grew mixed CoNS. For the 95 blood cultures with pure growth or no growth on subculture, there was very good agreement between real-time PCR and the BD Phoenix identification system for staphylococcal species categorization in S. aureus, S. epidermidis and non-S. epidermidis CoNS and meticillin-resistance determination (Cohens unweighted kappa coefficient κ=0.882). All MRSA and meticillin-susceptible S. aureus were correctly identified by mecA amplification. PCR amplification of mecA was more sensitive for direct detection of meticillin-resistant CoNS in positive blood cultures than testing with the BD Phoenix system. There were no major errors when identifying staphylococcal isolates and their meticillin susceptibility within 2.5 h. Further studies are needed to evaluate the clinical benefit of using such a rapid test on the consumption of glycopeptide antibiotics and the alteration of empiric therapy in the situation of positive blood cultures growing staphylococci, and the respective clinical outcomes.
Journal of Clinical Microbiology | 2012
Angharad P. Davies; Michelle Reid; Stephen J. Hadfield; Stuart Johnston; Jane Mikhail; Llinos G. Harris; Howard F. Jenkinson; Nidhika Berry; Ann M. Lewis; Khalid El-Bouri; Dietrich Mack
ABSTRACT Fifty-six α-hemolytic streptococcal isolates were identified using MALDI Biotyper MS (Bruker Daltonics), API 20 Strep (bioMérieux), and BD Phoenix (Becton, Dickinson). The gold standard for identification was 16S rRNA gene sequence analysis with 16S-23S rRNA intergenic spacer sequencing. The following percentages of isolates were correctly identified to the species level: MALDI Biotyper, 46%; BD Phoenix, 35%; and API 20 Strep, 26%.
Tuberculosis | 2008
Angharad P. Davies; A. P. Dhillon; Michael Young; Brian Henderson; T. D. McHugh; S. H. Gillespie
Resuscitation-promoting factors are small proteins found in many high G+C Gram-positive organisms. In picomolar concentrations in vitro they promote the emergence from dormancy and shorten the lag phase of growth of small inocula of responsive bacteria. Mycobacterium tuberculosis has five rpf gene orthologues all of which are expressed during in vitro growth. Rpfs may play a role in dormancy or reactivation of tubercle bacilli in vivo, and could be a potential target for chemotherapeutic intervention: however it is not known whether they are expressed by M. tuberculosis in vivo in the context of human infection. The work presented here demonstrates that Rpf expression can be detected in human tissues infected with M. tuberculosis and describes the pattern of this expression using immunocytochemistry with anti-Rpf antibodies.
urn:ISBN:1461410304 | 2013
Dietrich Mack; Angharad P. Davies; Llinos G. Harris; Rose Jeeves; Ben Pascoe; Johannes K.-M. Knobloch; Holger Rohde; Thomas S. Wilkinson
Coagulase-negative staphylococci, mainly Staphylococcus epidermidis, are currently the most frequent cause of hospital acquired infections in the USA. Mostly, but not exclusively, S. epidermidis infections are linked to the use of implanted medical devices like central venous catheters, prosthetic joints and heart valves, pacemakers, cardiac assist devices, cerebrospinal fluid shunts, and intraocular lenses. As new molecular techniques reveal that S. epidermidis are by no means the most prominent bacteria of the skin and mucous membrane flora, the implication is that S. epidermidis has specific virulence factors, which transforms this commensal bacterial species into one of the most successful pathogens in modern medicine. A vast array of specific attachment factors for native and host protein-modified device surfaces and the ability to accumulate in adherent multilayered biofilms appear to be vital for the success of S. epidermidis as a pathogen. Biofilm formation contributes to the ability of the organism to withstand the host’s innate and acquired immune defense mechanisms and to resist antimicrobial therapy, so that device removal is a regular feature for the treatment of S. epidermidis biomaterial-associated infection. Recent developments in the understanding of S. epidermidis virulence are reviewed in this chapter.
Topics in Current Chemistry | 2008
Dietrich Mack; Angharad P. Davies; Llinos G. Harris; Johannes K.-M. Knobloch; Holger Rohde
Medical device-associated infections, most frequently caused by Staphylococcus epidermidis and Staphylococcus aureus, are of increasing importance in modern medicine. The formation of adherent, multilayered bacterial biofilms is crucial in the pathogenesis of these infections. Polysaccharide intercellular adhesin (PIA), a homoglycan of β-1,6-linked 2-acetamido-2-deoxy-D: -glucopyranosyl residues, of which about 15% are non-N-acetylated, is central to biofilm accumulation in staphylococci. It transpires that polysaccharides - structurally very similar to PIA - are also key to biofilm formation in a number of other organisms including the important human pathogens Escherichia coli, Aggregatibacter (Actinobacillus) actinomycetemcomitans, Yersinia pestis, and Bordetella spp. Apparently, synthesis of PIA and related polysaccharides is a general feature important for biofilm formation in diverse bacterial genera. Current knowledge about the structure and biosynthesis of PIA and related polysaccharides is reviewed. Additionally, information on their role in pathogenesis of biomaterial-related and other type of infections and the potential use of PIA and related compounds for prevention of infection is evaluated.
BMC Microbiology | 2012
Anastasia Spiliopoulou; Maria I. Krevvata; Fevronia Kolonitsiou; Llinos G. Harris; Thomas S. Wilkinson; Angharad P. Davies; Georgios O Dimitracopoulos; Nikos K. Karamanos; Dietrich Mack
BackgroundThe skin commensal and opportunistic pathogen Staphylococcus epidermidis is a leading cause of hospital-acquired and biomaterial-associated infections. The polysaccharide intercellular adhesin (PIA), a homoglycan composed of β-1,6-linked N-acetylglucosamine residues, synthesized by enzymes encoded in icaADBC is a major functional factor in biofilm accumulation, promoting virulence in experimental biomaterial-associated S. epidermidis infection. Extracellular mucous layer extracts of S. epidermidis contain another major polysaccharide, referred to as 20-kDa polysaccharide (20-kDaPS), composed mainly out of glucose, N-acetylglucosamine, and being partially sulfated. 20-kDaPS antiserum prevents adhesion of S. epidermidis on endothelial cells and development of experimental keratitis in rabbits. Here we provide experimental evidence that 20-kDaPS and PIA represent distinct molecules and that 20-kDaPS is implicated in endocytosis of S. epidermidis bacterial cells by human monocyte-derived macrophages.ResultsAnalysis of 75 clinical coagulase-negative staphylococci from blood-cultures and central venous catheter tips indicated that 20-kDaPS is expressed exclusively in S. epidermidis but not in other coagulase-negative staphylococcal species. Tn917-insertion in various locations in icaADBC in mutants M10, M22, M23, and M24 of S. epidermidis 1457 are abolished for PIA synthesis, while 20-kDaPS expression appears unaltered as compared to wild-type strains using specific anti-PIA and anti-20-kDaPS antisera. While periodate oxidation and dispersin B treatments abolish immuno-reactivity and intercellular adhesive properties of PIA, no abrogative activity is exerted towards 20-kDaPS immunochemical reactivity following these treatments. PIA polysaccharide I-containing fractions eluting from Q-Sepharose were devoid of detectable 20-kDaPS using specific ELISA. Preincubation of non-20-kDaPS-producing clinical strain with increasing amounts of 20-kDaPS inhibits endocytosis by human macrophages, whereas, preincubation of 20-kDaPS-producing strain ATCC35983 with 20-kDaPS antiserum enhances bacterial endocytosis by human macrophages.ConclusionsIn conclusion, icaADBC is not involved in 20-kDaPS synthesis, while the chemical and chromatographic properties of PIA and 20-kDaPS are distinct. 20-kDaPS exhibits anti-phagocytic properties, whereas, 20-kDaPS antiserum may have a beneficial effect on combating infection by 20-kDaPS-producing S. epidermidis.