Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben Pascoe is active.

Publication


Featured researches published by Ben Pascoe.


Molecular Ecology | 2013

Progressive genome-wide introgression in agricultural Campylobacter coli

Samuel K. Sheppard; Xavier Didelot; Keith A. Jolley; Aaron E. Darling; Ben Pascoe; Guillaume Méric; David J. Kelly; Alison J. Cody; Frances M. Colles; Norval J. C. Strachan; Iain D. Ogden; Ken J. Forbes; N. P. French; Philip E. Carter; William G. Miller; Noel D. McCarthy; Robert J. Owen; Eva Litrup; Michael Egholm; Jason Affourtit; Stephen D. Bentley; Julian Parkhill; Martin Maiden; Daniel Falush

Hybridization between distantly related organisms can facilitate rapid adaptation to novel environments, but is potentially constrained by epistatic fitness interactions among cell components. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other by around 15% at the nucleotide level, corresponding to an average of nearly 40 amino acids per protein‐coding gene. Using whole genome sequencing, we show that a single C. coli lineage, which has successfully colonized an agricultural niche, has been progressively accumulating C. jejuni DNA. Members of this lineage belong to two groups, the ST‐828 and ST‐1150 clonal complexes. The ST‐1150 complex is less frequently isolated and has undergone a substantially greater amount of introgression leading to replacement of up to 23% of the C. coli core genome as well as import of novel DNA. By contrast, the more commonly isolated ST‐828 complex bacteria have 10–11% introgressed DNA, and C. jejuni and nonagricultural C. coli lineages each have <2%. Thus, the C. coli that colonize agriculture, and consequently cause most human disease, have hybrid origin, but this cross‐species exchange has so far not had a substantial impact on the gene pools of either C. jejuni or nonagricultural C. coli. These findings also indicate remarkable interchangeability of basic cellular machinery after a prolonged period of independent evolution.


Journal of Bacteriology | 2007

Zinc-Responsive Regulation of Alternative Ribosomal Protein Genes in Streptomyces coelicolor Involves Zur and σR

Gillian A. Owen; Ben Pascoe; Dimitris Kallifidas; Mark S. B. Paget

Streptomyces coelicolor contains paralogous versions of seven ribosomal proteins (S14, S18, L28, L31, L32, L33, and L36), which differ in their potential to bind structural zinc. The paralogues are termed C(+) or C(-) on the basis of the presence or absence of putative cysteine ligands. Here, mutational studies suggest that the C(-) version of L31 can functionally replace its C(+) paralogue only when expressed at an artificially elevated level. We show that the level of expression of four transcriptional units encoding C(-) proteins is elevated under conditions of zinc deprivation. Zur controls the expression of three transcriptional units (including rpmG2, rpmE2, rpmB2, rpsN2, rpmF2, and possibly rpsR2). Zur also controls the expression of the znuACB operon, which is predicted to encode a high-affinity zinc transport system. Surprisingly, the zinc-responsive control of the rpmG3-rpmJ2 operon is dictated by sigma(R), a sigma factor that was previously shown to control the response to disulfide stress in S. coelicolor. The induction of sigma(R) activity during zinc limitation establishes an important link between thiol-disulfide metabolism and zinc homeostasis.


PLOS ONE | 2014

A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter.

Guillaume Méric; Koji Yahara; Leonardos Mageiros; Ben Pascoe; Martin C. J. Maiden; Keith A. Jolley; Samuel K. Sheppard

The increasing availability of hundreds of whole bacterial genomes provides opportunities for enhanced understanding of the genes and alleles responsible for clinically important phenotypes and how they evolved. However, it is a significant challenge to develop easy-to-use and scalable methods for characterizing these large and complex data and relating it to disease epidemiology. Existing approaches typically focus on either homologous sequence variation in genes that are shared by all isolates, or non-homologous sequence variation - focusing on genes that are differentially present in the population. Here we present a comparative genomics approach that simultaneously approximates core and accessory genome variation in pathogen populations and apply it to pathogenic species in the genus Campylobacter. A total of 7 published Campylobacter jejuni and Campylobacter coli genomes were selected to represent diversity across these species, and a list of all loci that were present at least once was compiled. After filtering duplicates a 7-isolate reference pan-genome, of 3,933 loci, was defined. A core genome of 1,035 genes was ubiquitous in the sample accounting for 59% of the genes in each isolate (average genome size of 1.68 Mb). The accessory genome contained 2,792 genes. A Campylobacter population sample of 192 genomes was screened for the presence of reference pan-genome loci with gene presence defined as a BLAST match of ≥70% identity over ≥50% of the locus length - aligned using MUSCLE on a gene-by-gene basis. A total of 21 genes were present only in C. coli and 27 only in C. jejuni, providing information about functional differences associated with species and novel epidemiological markers for population genomic analyses. Homologs of these genes were found in several of the genomes used to define the pan-genome and, therefore, would not have been identified using a single reference strain approach.


Genome Biology and Evolution | 2015

Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis

Guillaume Méric; Maria Miragaia; Mark de Been; Koji Yahara; Ben Pascoe; Leonardos Mageiros; Jane Mikhail; Llinos G. Harris; Thomas S. Wilkinson; Joana Rolo; Sarah Lamble; James E. Bray; Keith A. Jolley; William P. Hanage; Rory Bowden; Martin C. J. Maiden; Dietrich Mack; Hermínia de Lencastre; Edward J. Feil; Jukka Corander; Samuel K. Sheppard

The opportunistic pathogens Staphylococcus aureus and Staphylococcus epidermidis represent major causes of severe nosocomial infection, and are associated with high levels of mortality and morbidity worldwide. These species are both common commensals on the human skin and in the nasal pharynx, but are genetically distinct, differing at 24% average nucleotide divergence in 1,478 core genes. To better understand the genome dynamics of these ecologically similar staphylococcal species, we carried out a comparative analysis of 324 S. aureus and S. epidermidis genomes, including 83 novel S. epidermidis sequences. A reference pan-genome approach and whole genome multilocus-sequence typing revealed that around half of the genome was shared between the species. Based on a BratNextGen analysis, homologous recombination was found to have impacted on 40% of the core genes in S. epidermidis, but on only 24% of the core genes in S. aureus. Homologous recombination between the species is rare, with a maximum of nine gene alleles shared between any two S. epidermidis and S. aureus isolates. In contrast, there was considerable interspecies admixture of mobile elements, in particular genes associated with the SaPIn1 pathogenicity island, metal detoxification, and the methicillin-resistance island SCCmec. Our data and analysis provide a context for considering the nature of recombinational boundaries between S. aureus and S. epidermidis and, the selective forces that influence realized recombination between these species.


Journal of Bacteriology | 2010

The Zinc-Responsive Regulator Zur Controls Expression of the Coelibactin Gene Cluster in Streptomyces coelicolor

Dimitris Kallifidas; Ben Pascoe; Gillian A. Owen; Claire M. Strain-Damerell; Hee-Jeon Hong; Mark S. B. Paget

Streptomyces coelicolor mutants lacking the zinc-responsive Zur repressor are conditionally defective in sporulation, presumably due to the overexpression of one or more Zur target genes. Gene disruption analyses revealed that deregulation of previously known Zur targets was not responsible for the sporulation phenotype. We used microarrays to identify further Zur targets and discovered that Zur controls a cluster of genes predicted to direct synthesis of an uncharacterized siderophore-related non-ribosomally encoded peptide designated coelibactin. Disruption of a key coelibactin biosynthetic gene suppressed the Zur sporulation phenotype, suggesting that deregulation of coelibactin synthesis inhibits sporulation.


The ISME Journal | 2016

Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections

Bethany Lorna Dearlove; Alison J. Cody; Ben Pascoe; Guillaume Méric; Daniel J. Wilson; Samuel K. Sheppard

Campylobacter jejuni and Campylobacter coli are the biggest causes of bacterial gastroenteritis in the developed world, with human infections typically arising from zoonotic transmission associated with infected meat. Because Campylobacter is not thought to survive well outside the gut, host-associated populations are genetically isolated to varying degrees. Therefore, the likely origin of most strains can be determined by host-associated variation in the genome. This is instructive for characterizing the source of human infection. However, some common strains, notably isolates belonging to the ST-21, ST-45 and ST-828 clonal complexes, appear to have broad host ranges, hindering source attribution. Here whole-genome sequencing has the potential to reveal fine-scale genetic structure associated with host specificity. We found that rates of zoonotic transmission among animal host species in these clonal complexes were so high that the signal of host association is all but obliterated, estimating one zoonotic transmission event every 1.6, 1.8 and 12 years in the ST-21, ST-45 and ST828 complexes, respectively. We attributed 89% of clinical cases to a chicken source, 10% to cattle and 1% to pig. Our results reveal that common strains of C. jejuni and C. coli infectious to humans are adapted to a generalist lifestyle, permitting rapid transmission between different hosts. Furthermore, they show that the weak signal of host association within these complexes presents a challenge for pinpointing the source of clinical infections, underlining the view that whole-genome sequencing, powerful though it is, cannot substitute for intensive sampling of suspected transmission reservoirs.


PLOS Genetics | 2016

Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations

Alan McNally; Yaara Oren; Darren Kelly; Ben Pascoe; Steven Dunn; Tristan Sreecharan; Minna Vehkala; Niko Välimäki; Michael B. Prentice; Amgad Ashour; Oren Avram; Tal Pupko; Ulrich Dobrindt; Ivan Literak; Sebastian Guenther; Katharina Schaufler; Lothar H. Wieler; Zong Zhiyong; Samuel K. Sheppard; James O. McInerney; Jukka Corander

The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug–resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements.


Environmental Microbiology | 2015

Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni

Ben Pascoe; Guillaume Méric; Susan Murray; Koji Yahara; Leonardos Mageiros; Ryan Bowen; Nathan H. Jones; Rose Jeeves; Hilary M. Lappin-Scott; Hiroshi Asakura; Samuel K. Sheppard

Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome‐wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 C ampylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST‐21 and ST‐45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans.


Environmental Microbiology | 2017

Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork

Koji Yahara; Guillaume Méric; Aidan J. Taylor; Stefan P. W. de Vries; Susan Murray; Ben Pascoe; Leonardos Mageiros; Alicia Torralbo; Ana Vidal; A.M. Ridley; Sho Komukai; Helen Wimalarathna; Alison J. Cody; Frances M. Colles; Noel D. McCarthy; David Harris; James E. Bray; Keith A. Jolley; Martin C. J. Maiden; Stephen D. Bentley; Julian Parkhill; Christopher D. Bayliss; Andrew J. Grant; Duncan J. Maskell; Xavier Didelot; David J. Kelly; Samuel K. Sheppard

Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, primarily associated with the consumption of contaminated poultry. C. jejuni lineages vary in host range and prevalence in human infection, suggesting differences in survival throughout the poultry processing chain. From 7343 MLST-characterised isolates, we sequenced 600 C. jejuni and C. coli isolates from various stages of poultry processing and clinical cases. A genome-wide association study (GWAS) in C. jejuni ST-21 and ST-45 complexes identified genetic elements over-represented in clinical isolates that increased in frequency throughout the poultry processing chain. Disease-associated SNPs were distinct in these complexes, sometimes organised in haplotype blocks. The function of genes containing associated elements was investigated, demonstrating roles for cj1377c in formate metabolism, nuoK in aerobic survival and oxidative respiration, and cj1368-70 in nucleotide salvage. This work demonstrates the utility of GWAS for investigating transmission in natural zoonotic pathogen populations and provides evidence that major C. jejuni lineages have distinct genotypes associated with survival, within the host specific niche, from farm to fork.


urn:ISBN:1461410304 | 2013

Staphylococcus epidermidis in biomaterial-associated infections

Dietrich Mack; Angharad P. Davies; Llinos G. Harris; Rose Jeeves; Ben Pascoe; Johannes K.-M. Knobloch; Holger Rohde; Thomas S. Wilkinson

Coagulase-negative staphylococci, mainly Staphylococcus epidermidis, are currently the most frequent cause of hospital acquired infections in the USA. Mostly, but not exclusively, S. epidermidis infections are linked to the use of implanted medical devices like central venous catheters, prosthetic joints and heart valves, pacemakers, cardiac assist devices, cerebrospinal fluid shunts, and intraocular lenses. As new molecular techniques reveal that S. epidermidis are by no means the most prominent bacteria of the skin and mucous membrane flora, the implication is that S. epidermidis has specific virulence factors, which transforms this commensal bacterial species into one of the most successful pathogens in modern medicine. A vast array of specific attachment factors for native and host protein-modified device surfaces and the ability to accumulate in adherent multilayered biofilms appear to be vital for the success of S. epidermidis as a pathogen. Biofilm formation contributes to the ability of the organism to withstand the host’s innate and acquired immune defense mechanisms and to resist antimicrobial therapy, so that device removal is a regular feature for the treatment of S. epidermidis biomaterial-associated infection. Recent developments in the understanding of S. epidermidis virulence are reviewed in this chapter.

Collaboration


Dive into the Ben Pascoe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Yahara

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge