Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angus C. Grey is active.

Publication


Featured researches published by Angus C. Grey.


Journal of Proteome Research | 2009

MALDI imaging mass spectrometry of integral membrane proteins from ocular lens and retinal tissue.

Angus C. Grey; Pierre Chaurand; Richard M. Caprioli; Kevin L. Schey

A tissue preparation protocol for MALDI (matrix-assisted laser desorption/ionization) imaging mass spectrometry of integral membrane proteins was developed using ocular lens and retinal tissues as model samples. Frozen bovine and human lenses were cryosectioned equatorially or axially at -20 degrees C into 20 mum-thick tissue sections. Lens sections were mounted onto gold-coated MALDI targets by methanol soft-landing to maintain tissue integrity. Tissue sections underwent extensive water washing to deplete the samples of highly abundant water-soluble proteins. Automated matrix deposition was achieved using an acoustic reagent multispotter, with sinapinic acid as matrix and high percentage acetonitrile as solvent, with a center-to-center spot spacing of 200-300 mum. Molecular images of full-length Aquaporin-0 (AQP0) and its most abundant truncation products were obtained from mass spectral data acquired across whole bovine and human lens sections. In equatorial and axial sections of bovine lenses, full-length AQP0 was detected throughout the lens. A truncation product corresponding to AQP0 (1-260) was detected in the bovine lens core at low abundance. In axial lens sections, no antero-posterior variation was detected. In 11 year-old human lens sections, full-length AQP0 was most abundant in the lens periphery, but was detected throughout the lens. The major truncation product, consisting of AQP0 residues 1-246, was absent from the lens periphery and increased in abundance in the lens core. This tissue preparation protocol was then applied to image the distribution of the G-protein coupled receptor, opsin, in the rabbit retina. This protocol has expanded the variety of target analytes which can be detected by MALDI imaging mass spectrometry to include intact integral membrane proteins.


Investigative Ophthalmology & Visual Science | 2013

Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium.

Zsolt Ablonczy; Daniel Higbee; David M. Anderson; Mohammad Dahrouj; Angus C. Grey; Danielle B. Gutierrez; Yiannis Koutalos; Kevin L. Schey; Anne Hanneken; Rosalie K. Crouch

PURPOSE The accumulation of lipofuscin in the RPE is a hallmark of aging in the eye. The best characterized component of lipofuscin is A2E, a bis-retinoid byproduct of the normal retinoid visual cycle, which exhibits a broad spectrum of cytotoxic effects in vitro. The purpose of our study was to correlate the distribution of lipofuscin and A2E across the human RPE. METHODS Lipofuscin fluorescence was imaged in flat-mounted RPE from human donors of various ages. The spatial distributions of A2E and its oxides were determined using matrix-assisted laser desorption-ionization imaging mass spectrometry (MALDI-IMS) on flat-mounted RPE tissue sections and retinal cross-sections. RESULTS Our data support the clinical observations of strong RPE fluorescence, increasing with age, in the central area of the RPE. However, there was no correlation between the distribution of A2E and lipofuscin, as the levels of A2E were highest in the far periphery and decreased toward the central region. High-resolution MALDI-IMS of retinal cross-sections confirmed the A2E localization data obtained in RPE flat-mounts. Singly- and doubly-oxidized A2E had distributions similar to A2E, but represented <10% of the A2E levels. CONCLUSIONS This report to our knowledge is the first description of the spatial distribution of A2E in the human RPE by imaging mass spectrometry. These data demonstrate that the accumulation of A2E is not responsible for the increase in lipofuscin fluorescence observed in the central RPE with aging.


Experimental Eye Research | 2003

Insertion of MP20 into lens fibre cell plasma membranes correlates with the formation of an extracellular diffusion barrier

Angus C. Grey; Marc D. Jacobs; Tamir Gonen; Joerg Kistler; Paul J. Donaldson

It is known that during lens differentiation a number of fibre cell specific membrane proteins change their expression profiles. In this study we have investigated how the profiles of the two most abundant fibre cell membrane proteins AQP0 (formerly known as Major Intrinsic Protein, MIP) and MP20 change as a function of fibre cell differentiation. While AQP0 was always found associated with fibre cell membranes, MP20 was initially found in the cytoplasm of peripheral fibre cells before becoming inserted into the membranes of deeper fibre cells. To determine at what stage in fibre cell differentiation MP20 becomes inserted into the membrane, sections were double-labelled with an antibody against MP20, and propidium iodide, a marker of cell nuclei. This showed that membrane insertion of MP20 occurs in a discrete transition zone that coincided with the degradation of cell nuclei. To test the significance of the membrane insertion of MP20 to overall lens function, whole lenses were incubated for varying times in a solution containing either Texas Red-dextran or Lucifer yellow as markers of extracellular space. Lenses were fixed and then processed for immunocytochemistry. Analysis of these sections showed that both tracer dyes were excluded from the extracellular space in an area that coincided with insertion of MP20 into the plasma membrane. Our results suggest that the insertion of MP20 into fibre cell membranes coincides with the creation of a barrier that restricts the diffusion of molecules into the lens core via the extracellular space.


Investigative Ophthalmology & Visual Science | 2011

Spatial localization of A2E in the retinal pigment epithelium.

Angus C. Grey; Rosalie K. Crouch; Yiannis Koutalos; Kevin L. Schey; Zsolt Ablonczy

PURPOSE Lipofuscin, a fluorescent lysosomal pigment made of lipophilic molecules, is associated with age-related pathophysiological processes in the retinal pigment epithelium (RPE). The best-characterized components of lipofuscin are A2E and its oxides, but a direct spatial correlation with lipofuscin has not previously been possible. METHODS Lipofuscin fluorescence was mapped across the RPE of Abca4(-/-) and Sv129 (background strain control) mice. In the same tissues, they determined the spatial distribution of A2E and its oxides by using the high molecular specificity of matrix-assisted laser desorption-ionization imaging mass spectrometry (MALDI-IMS). The fluorescence and tandem mass spectra taken directly from the tissue were compared with those of synthetic A2E standard. RESULTS In 2-month-old mice, A2E was found in the center of the retinal pigment epithelial tissue; with age, A2E increased across the tissue. With high levels of A2E, there was a marked correlation between A2E and lipofuscin, but with low levels this correlation diminished. The distributions of the oxidized forms of A2E were also determined. The amount of oxidation on A2E remained constant over 6 months, implying that A2E does not become increasingly oxidized with age in this time frame. CONCLUSIONS This report is the first description of the spatial imaging of a specific retinoid from fresh tissue and the first description of a direct correlation of A2E with lipofuscin. The molecule-specific imaging of lipofuscin components from the RPE suggests wide applicability to other small molecules and pharmaceuticals for the molecular characterization and treatment of age-related macular degeneration.


Alzheimers & Dementia | 2014

Alzheimer's disease in the human eye. Clinical tests that identify ocular and visual information processing deficit as biomarkers

Lily Yu-Li Chang; Jennifer Lowe; Alvaro O. Ardiles; Julie Lim; Angus C. Grey; Ken Robertson; Helen V. Danesh-Meyer; Adrian G. Palacios; Monica L. Acosta

Alzheimers disease (AD) is the most common form of dementia with progressive deterioration of memory and cognition. Complaints related to vision are common among AD patients. Several changes in the retina, lens, and in the vasculature have been noted in the AD eye that may be the cause of visual symptoms experienced by the AD patient. Anatomical changes have been detected within the eye before signs of cognitive impairment and memory loss are apparent. Unlike the brain, the eye is a unique organ that can be visualized noninvasively at the cellular level because of its transparent nature, which allows for inexpensive testing of biomarkers in a clinical setting. In this review, we have searched for candidate biomarkers that could enable diagnosis of AD, covering ocular neurodegeneration associated with functional tests. We explore the evidence that suggests that inexpensive, noninvasive clinical tests could be used to detect AD ocular biomarkers.


BMC Cell Biology | 2001

MP20, the second most abundant lens membrane protein and member of the tetraspanin superfamily, joins the list of ligands of galectin-3

Tamir Gonen; Angus C. Grey; Marc D. Jacobs; Paul J. Donaldson; Joerg Kistler

BackgroundAlthough MP20 is the second most highly expressed membrane protein in the lens its function remains an enigma. Putative functions for MP20 have recently been inferred from its assignment to the tetraspanin superfamily of integral membrane proteins. Members of this family have been shown to be involved in cellular proliferation, differentiation, migration, and adhesion. In this study, we show that MP20 associates with galectin-3, a known adhesion modulator.ResultsMP20 and galectin-3 co-localized in selected areas of the lens fiber cell plasma membrane. Individually, these proteins purified with apparent molecular masses of 60 kDa and 22 kDa, respectively. A 104 kDa complex was formed in vitro upon mixing the purified proteins. A 102 kDa complex of MP20 and galectin-3 could also be isolated from detergent-solubilized native fiber cell membranes. Binding between MP20 and galectin-3 was disrupted by lactose suggesting the lectin site was involved in the interaction.ConclusionsMP20 adds to a growing list of ligands of galectin-3 and appears to be the first representative of the tetraspanin superfamily identified to possess this specificity.


Biochemistry | 2010

Novel fatty acid acylation of lens integral membrane protein aquaporin-0.

Kevin L. Schey; Danielle B. Gutierrez; Zhen Wang; Junhua Wei; Angus C. Grey

Fatty acid acylation of proteins is a well-studied co- or posttranslational modification typically conferring membrane trafficking signals or membrane anchoring properties to proteins. Commonly observed examples of protein acylation include N-terminal myristoylation and palmitoylation of cysteine residues. In the present study, direct tissue profiling mass spectrometry of bovine and human lens sections revealed an abundant signal tentatively assigned as a lipid-modified form of aquaporin-0. LC/MS/MS proteomic analysis of hydrophobic tryptic peptides from lens membrane proteins revealed both N-terminal and C-terminal peptides modified by 238 and 264 Da which were subsequently assigned by accurate mass measurement as palmitoylation and oleoylation, respectively. Specific sites of modification were the N-terminal methionine residue and lysine 238 revealing, for the first time, an oleic acid modification via an amide linkage to a lysine residue. The specific fatty acids involved reflect their abundance in the lens fiber cell plasma membrane. Imaging mass spectrometry indicated abundant acylated AQP0 in the inner cortical region of both bovine and human lenses and acylated truncation products in the lens nucleus. Additional analyses revealed that the lipid-modified forms partitioned exclusively to a detergent-resistant membrane fraction, suggesting a role in membrane domain targeting.


Clinical and Experimental Pharmacology and Physiology | 2004

Functional imaging: New views on lens structure and function

Paul J. Donaldson; Angus C. Grey; B. Rachelle Merriman-Smith; Aran M. G. Sisley; Christian Soeller; Mark B. Cannell; Marc D. Jacobs

1. We have developed an experimental imaging approach that allows the distribution of lens membrane proteins to be mapped with subcellular resolution over large distances as a function of fibre cell differentiation.


Biochemistry | 2013

Mass spectrometry of membrane proteins: a focus on aquaporins.

Kevin L. Schey; Angus C. Grey; Joshua J. Nicklay

Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.


Archives of Biochemistry and Biophysics | 2013

Similar molecules spatially correlate with lipofuscin and N-retinylidene-N-retinylethanolamine in the mouse but not in the human retinal pigment epithelium.

Zsolt Ablonczy; Daniel Higbee; Angus C. Grey; Yiannis Koutalos; Kevin L. Schey; Rosalie K. Crouch

The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI-IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.

Collaboration


Dive into the Angus C. Grey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosalie K. Crouch

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Zsolt Ablonczy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiannis Koutalos

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge