Angus M. Duncan
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angus M. Duncan.
Bulletin of Volcanology | 1987
John E. Guest; Christopher R. J. Kilburn; Harry Pinkerton; Angus M. Duncan
The eruptions of Mount Etna in 1981 on the north flank and 1983 on the south flank of the volcano were of strikingly different character. The former was a short duration, high effusion rate eruption producing for the most part a simple flow-field; the latter was of relatively long duration and low effusion rate, producing a compound flow-field of overlapping flows.Despite the differences between the eruptive behaviour of these two events and the way in which the flow-field developed, both the flow-fields achieved about the same maximum length. This is considered fortuitous. The evidence suggests that the main 1981 flow stopped because the lava supply ceased and was thus volume controlled. The 1983 flow-field had a more complex history of branching, but in this case it appears that, for the longest individual flow, cooling played an important role in controlling the maximum extent of the flows.
Journal of Volcanology and Geothermal Research | 1999
John E. Guest; J. L. Gaspar; P. D. Cole; G. Queiroz; Angus M. Duncan; Nicolau Wallenstein; Teresa Ferreira; José Pacheco
Abstract Furnas is the easternmost of the three active central volcanoes on the island of Sao Miguel in the Azores. Unlike the other two central volcanoes, Sete Cidades and Fogo, Furnas does not have a well-developed edifice, but consists of a steep-sided caldera complex 8×5 km across. It is built on the outer flanks of the Povoacao/Nordeste lava complex that forms the eastern end of Sao Miguel. Constructive flanks to the volcano exist on the southern side where they form the coastal cliffs, and to the west. The caldera margins tend to reflect the regional/local tectonic pattern which has also controlled the distribution of vents within the caldera and areas of thermal springs. Activity at Furnas has been essentially explosive, erupting materials of trachytic composition. Products associated with the volcano include plinian and sub-plinian pumice deposits, ignimbrites and surge deposits, phreatomagmatic ashes, block and ash deposits and dome materials. Most of the activity has occurred from vents within the caldera, or on the caldera margin, although strombolian eruptions with aa flows of ankaramite and hawaiite have occurred outside the caldera. The eruptive history consists of at least two major caldera collapses, followed by caldera infilling. Based on 14 C dates, it appears that the youngest major collapse occurred about 12,000–10,000 years BP. New 14 C dates for a densely welded ignimbrite suggest that a potential caldera-forming eruption occurred at about 30,000 years BP. Recent eruptions (
Journal of Volcanology and Geothermal Research | 1995
P. D. Cole; G. Queiroz; Nicolau Wallenstein; J. L. Gaspar; Angus M. Duncan; John E. Guest
The 1630 AD eruption on the island of Sa˜o Miguel in the Azores took place from a vent in the southern part of the 7 × 5 km caldera of Furnas volcano. Precursory seismic activity occurred at least 8 hours before the eruption began and was felt over 30 km away. This seismic activity caused extensive damage destroying almost all buildings within a 10 km radius and probably triggered landslides on the southern coast. The explosive activity lasted ~ 3 days and ashfall occurred as far as 550 km away. Published models yield a volume of 0.65 km3 (DRE) for the explosive products. Throughout the course of the eruption more than six discrete airfall lapilli layers, each of subplinian magnitude, were generated by magmatic explosive activity. Dispersal directions initially to the west and finally northeast of the vent indicate a change in wind direction during the eruption. Isopleth maps suggest column heights of up to 14 km and wind speeds varying between 20°) at least one lapilli layer (L2) shows pinch and swell thickness variations, and rounded pumice clasts suggesting instant remobilisation as grain flows. Ash-rich layers with abundant accretionary lapilli and vesicular textures are interbedded with the lapilli layers and represent the deposits formed by phreatomagmatic phases that punctuated the purely magmatic activity. The ash-rich layers show lateral thickness variations, as well as cross-bedding and sand-wave structures suggesting that low-concentration, turbulent flows (surges) deposited material on topographic highs. These pyroclastic surges were probably responsible for the 80 people reported burned to death 4 km southwest of the vent. High-particle-concentration, non-turbulent pyroclastic flows were channelled down steep valleys to the southern coast contemporaneously with the low-concentration surges. The massive flow deposits (~ 2 m thick) pass laterally into thin, stratified, accretionary lapilli-rich ashes (~ 20 cm thick) over 100 m horizontally. Lateral transition between thick massive and thin stratified facies occurs on a flat surface unconfined by topography indicating that the flows had an effective yield strength. Effusive activity followed the explosive activity building a trachytic lava dome with a volume of ~20 × 106 m3 (0.02 km3 DRE) within the confines of the tuff/pumice cone formed during the explosive phase. Historic records suggest that dome building occurred over a period of at least two months. Calculated durations for eruptive phases and the fluctuation in eruptive style suggest that the eruption was pulsatory which may have been controlled by variable magma supply to the surface.
Global Environmental Change Part B: Environmental Hazards | 2000
David K. Chester; Martin Degg; Angus M. Duncan; John E. Guest
Abstract The most dynamic demographic process of the past 250 years has been the movement of people from rural areas to cities. For most of this period urbanisation has been concentrated in economically more developed parts of the world, but during the last 50 years the focus has shifted to economically less developed regions. Urbanisation, particularly in developing countries, has led to increasing global exposure to a variety of natural hazards, not the least of which are risks posed to large cities by volcanoes. In this paper we monitor these demographic changes and detail the various types of volcanic hazard to which cities are exposed. A major eruption affecting a city in a developing country could cause widespread loss of life and regional disruption. Effective response, however, might minimise casualties in a city within a developed nation affected by a major eruption, but the economic impact could have global consequences. We argue that global hazard exposure is often subtle and involves not only the size of a city and the types of volcanic product that may occur, but also the strategic position of the threatened city within the economy of a country and/or region and the fact that volcano-induced tsunami and other consequences of eruptions, such as climatic change, may affect cities far removed from a given eruption site. Mitigation measures informed by both specific prediction (surveillance) and general prediction (hazard mapping) are providing the potential to reduce hazard exposure. The paper concludes with a consideration of ongoing research, in particular the emphasis currently being placed on conflating hazard analysis with studies of place, economy, society and culture.
Journal of Volcanology and Geothermal Research | 2002
David K. Chester; Chris Dibben; Angus M. Duncan
Volcanology has been in the past and in many respects remains a subject dominated by pure research grounded in the earth sciences. Over the past 30 years a paradigm shift has occurred in hazard assessment which has been aided by significant changes in the social theory of natural hazards and the first-hand experience gained in the 1990s by volcanologists working on projects conceived during the International Decade for Natural Disaster Reduction (IDNDR). Today much greater stress is placed on human vulnerability, the potential for marginalisation of disadvantaged individuals and social groups, and the requirement to make applied volcanology sensitive to the characteristics of local demography, economy, culture and politics. During the IDNDR a methodology, broadly similar to environmental impact analysis, has emerged as the preferred method for studying human vulnerability and risk assessment in volcanically active regions. The characteristics of this new methodology are discussed and the progress which has been made in innovating it on the European Union laboratory volcanoes located in western Europe is reviewed. Furnas (Sao Miguel, Azores) and Vesuvius in Italy are used as detailed case studies.
Journal of Volcanology and Geothermal Research | 2004
Angus M. Duncan; John E. Guest; Ellen R. Stofan; Steven W. Anderson; Harry Pinkerton; Sonia Calvari
A number of tumuli formed on the aa-dominated lava fan complex which developed in the medial zone of the 1983 flow-field of Mount Etna during the later stages of the eruption. This complex flow-field formed on shallow sloping ground below a scarp between 1900 and 1700 m asl. A major tube system fed a branching tube network in the fan complex. Numerous tumuli and break-outs of lava formed in the fan. Three main types of tumulus are identified: (1) Focal tumuli, which are formed from the break-up and uplift of ‘old’, thick lava crust and themselves become sustained sites for the distribution of lava both as flows and within distributary tubes. These focal tumuli are significant centres associated with major tubes. (2) Satellite tumuli, which are typically elongate, whale-back shaped features that branch out from focal tumuli. These satellite tumuli were initially lava flows erupted from a focal tumulus. The crust of the flow slowed or came to a halt and the rigid crust became uplifted and fractured, forming a dome-shaped ridge feature. These satellite tumuli continued to be fed from the focal tumulus and became sites of lava emission with numerous break-outs. (3) Distributary tumuli formed on the fan associated with short-lived break-outs from tubes and are relatively simple structures formed from limited effusion of toey lobes and pahoehoe lava. The major tumuli on the fan complex show distinct dilation fractures. The fracture surfaces provide good exposure of the crust and three distinct zones are recognised – an upper zone showing columnar jointing, a middle zone consisting of planar fracture surfaces and a basal zone with distinctive banded planar fracture surfaces showing evidence of both brittle and ductile formation. Using these data a model is proposed for tumulus growth. Field analysis of the fan complex shows how it was fed by a branching tube system, leading to flow thickening, formation of tumuli and numerous ephemeral boccas.
Bulletin of Volcanology | 1993
P. D. Cole; John E. Guest; Angus M. Duncan
A model is presented for the emplacement of intermediate volume ignimbrites based on a study of two ∼6 km3 volume ignimbrites on Roccamonfina Volcano, Italy. The model considers that the flows were slow moving, and quickly deflated from turbulent to non-turbulent conditions. Yield strength and density increased whereas fluidisation decreased with time and runout of the pyroclastic flows. In proximal locations, on the caldera rim, heterogeneous exposures including discontinuous lithic breccias, stratified and cross-stratified units interbedded with massive ignimbrite suggest deposition from turbulent flows. In medial locations thick, massive ignimbrite occurs associated with three types of co-ignimbrite lithic breccia which we interpret as being emplaced by non-turbulent flows. Multiple grading of different breccia/lithic concentration types within single flow units indicates that internal shear occurred producing overriding or overlapping of the rear of the flow onto the slower-moving front part. This overriding of different parts of non-turbulent pyroclastic flows could be caused by at least two different mechanisms: (1) changes in flow regime, such as hydraulic jumps that may occur at breaks in slope; and (2) periods of increased discharge rate, possibly associated with caldera collapse, producing fresh pulses of lithic-rich material that sheared onto the slower-moving part of the flow in front.We propose that ground surge deposits enriched in pumice compared with their associated ignimbrite probably formed by a flow separation mechanism from the top and front of the pyroclastic flow. These turbulent clouds moved ahead of the non-turbulent lower part of the flow to form stratified pumice-rich deposits. In distal regions well-developed coarse, often clast-supported, pumice concentrations zones and coarse intra-flow-unit lithic concentrations occur within the massive ignimbrite. We suggest that the flows were non-turbulent, possessed a relatively high yield strength and may have moved by plug flow prior to emplacement.
Religion | 2010
David K. Chester; Angus M. Duncan
Abstract Particularly within Christianity and Judaism, theodicy is defined as any attempt to reconcile notions of a loving and just God with the reality of human suffering. The paper begins with a review of the ways in which the Hebrew and Christian scriptures (i.e. the Old and New Testaments) have interpreted disasters, particularly those caused by earthquakes and volcanic eruptions. Theological analysis of disasters did not end at the close of the biblical era, but has continued throughout Christian history and a number of so called Leibnizian philosophical models of theodicy have been developed. These are critically introduced. In the past few decades there has been a sea‐change in both Christian attitudes towards disasters and in the ways in which losses are viewed by hazard researchers. From the perspective of the latter, an approach that envisions disasters as being primarily caused by extreme physical events has been largely replaced by one in which disasters are studied as social constructs, with a greater emphasis being placed on human vulnerability. Academic scholarship on the Leibnizian philosophical models continues, but greater prominence is now given to viewing disasters as events that represent human sinfulness which is manifested in national and international disparities in wealth, poverty, hazard preparedness and disaster losses. Finally, it is proposed that these new hazard analytical and theological perspectives are synergetic: allowing on the one hand churches, their members as well as their leaders, more fully to engage in disaster relief; whilst, on the other, enabling civil defence planners more effectively to use the often considerable human and financial resources of Christian communities and their charitable agencies
Bulletin of Volcanology | 1992
P. D. Cole; John E. Guest; Angus M. Duncan; David K. Chester; R Bianchi
Roccamonfina, part of the Roman Potassic Volcanic Province, is an example of a composite volcano with a complex history of caldera development. The main caldera truncates a cone constructed predominantly of this caldera may have been associated with one of the ignimbritic eruptions of the Brown Leucitic Tuff (BLT) around 385 000 yr BP. The Campagnola Tuff, the youngest ignimbrite of the BLT, however, drapes the caldera margin and must postdate at least the initial stages of collapse. During the subsequent history of the caldera there were several major explosive eruptions. The largest of these was that of the Galluccio Tuff at about 300 000 yr BP. It is likely that there was further collapse within the main caldera associated with these eruptions. It is of note that despite these subsequent major explosive eruptions later collapse occurred within the confines of the main caldera. Between eruptions caldera lakes developed producing numerous lacustrine beds within the caldera fill. Extensive phases of phreatomagmatic activity generated thick sequences of pyroclastic surge and fall deposits. Activity within the main caldera ended with the growth of a large complex of basaltic trachyandestite lava domes around 150 000 yr BP. Early in the history of Roccamonfina sector collapse on the northern flank of the volcano formed the northern caldera. One of the youngest major events on Roccamonfina occurred at the head of this northern caldera with explosive activity producing the Conca Ignimbrite and associated caldera. There is no evidence that there was any linkage in the plumbing systems that fed eruptions in the main and northern calderas.
The Geographical Journal | 1981
Angus M. Duncan; David K. Chester; John E. Guest
Mount Etna, the largest continental volcano in the world, has a substantial environ? mental impact on the local area. Indeed, the Etna region is one of the most prosperous and densely populated parts of Sicily. This derives in large measure from the ample water supply from the porous lavas and the fertile volcanic soils. Nowhere on the slopes of the volcano, however, is free from the risk of damage by eruptive activity. The volcanic hazard, which on Mt Etna is mainly from lava flows, can be considered in two parts, firstly risk to settlements and secondly, potential damage to agricultural land. There is a fairly complete record of the location and nature of the eruptions of Mt Etna over the last 400 years. If it is assumed that the activity in the near future will follow the same pattern as that of the recent past, it is possible to construct a generalpredictive model of the volcanic eruptions of Mt Etna. The prob? lems and limitations encountered in trying to develop such a predictive model are considered in this account.