Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angus Nedderman is active.

Publication


Featured researches published by Angus Nedderman.


Chemical Research in Toxicology | 2009

Assessment of Three Human in Vitro Systems in the Generation of Major Human Excretory and Circulating Metabolites

Deepak Dalvie; R. Scott Obach; Ping Kang; Chandra Prakash; Cho-Ming Loi; Susan Hurst; Angus Nedderman; Lance Goulet; Evan Smith; Hai-Zhi Bu; Dennis Smith

An early understanding of key metabolites of drugs is crucial in drug discovery and development. As a result, several in vitro models typically derived from liver are frequently used to study drug metabolism. It is presumed that these in vitro systems provide an accurate view of the potential in vivo metabolites and metabolic pathways. However, no formal analysis has been conducted to validate their use. The goal of the present study was to conduct a comprehensive analysis to assess if the three commonly used in vitro systems, pooled human liver microsomes, liver S-9 fraction, and hepatocytes, adequately predict in vivo metabolic profiles for drugs. The second objective was to compare the overall capabilities of these three systems to generate in vivo metabolic profiles. Twenty-seven compounds in the Pfizer database and 21 additional commercially available compounds of diverse structure and routes of metabolism for which the human ADME data was available were analyzed in this study to assess the performance of the in vitro systems. The results suggested that all three systems reliably predicted human excretory and circulating metabolite profiles. Furthermore, the success in predicting primary metabolites and metabolic pathways was high (>70%), but the predictability of secondary metabolites was less reliable in the three systems. Thus, the analysis provides sufficient confidence in using in vitro systems to reliably produce primary in vivo human metabolites and supports their application in early discovery to identify metabolic spots for optimization of metabolic liabilities anticipated in humans in vivo. However, the in vitro systems cannot solely mitigate the risk of disproportionate circulating metabolites in humans and may need to be supplemented with metabolic profiling of plasma samples from first-in-human studies or early human radiolabeled studies.


British Journal of Clinical Pharmacology | 2008

Assessment of the absorption, metabolism and absolute bioavailability of maraviroc in healthy male subjects

Samantha Abel; Deborah Russell; Lyndsey A. Whitlock; Caroline E. Ridgway; Angus Nedderman; D. K. Walker

AIMS Two studies were conducted to: (i) quantify the amount of drug-related radioactivity in blood, plasma, urine and faeces following a (14)C-labelled dose of maraviroc; and (ii) investigate the pharmacokinetics, safety and tolerability of intravenous (i.v.) maraviroc and determine the absolute bioavailability of oral maraviroc. Metabolite profiling was also conducted. Data from both of these studies were used to construct a mass-balance model for maraviroc. METHODS Study 1 was an open-label study in three healthy male subjects. All subjects received a single 300-mg oral solution dose of (14)C-labelled maraviroc. Study 2 included two cohorts of subjects. Cohort 1 involved a double-blind (third party open), four-way crossover study where eight subjects received escalating i.v. doses of maraviroc (3, 10 and 30 mg) with placebo insertion. Cohort 2 involved an open, two-way crossover study where 12 subjects received 30 mg maraviroc by i.v. infusion and 100 mg maraviroc orally in random order. In study 1, blood samples and all urine and faeces were collected up to at least 120 h postdose. In study 2, blood samples were taken at intervals up to 48 h postdose. Urine was also collected up to 24 h postdose in cohort 1 only. RESULTS After oral administration in study 1, maraviroc was rapidly absorbed with a plasma T(max) reached by 2 h postdose for all three subjects. The maximum concentrations of radioactivity also occurred within 2 h for all subjects. There was a higher amount of radioactivity in plasma than in blood (blood/plasma ratio approximately 0.6 for AUC(t) and C(max)). Unchanged maraviroc was the major circulating component in plasma, accounting for approximately 42% of the circulating radioactivity. Following a 300-mg (14)C-labelled maraviroc dose, means of 76.4% and 19.6% of radioactivity were recovered in the faeces and urine, respectively. The mean total recovery of dosed radioactivity was 96%, with the majority of radioactivity being recovered within 96 h postdose. Profiling of the urine and faeces showed similar and extensive metabolism in all subjects. Unchanged maraviroc was the major excreted component (33%). The major metabolic pathways were determined and involved oxidation and N-dealkylation. Intravenous doses of maraviroc (3-30 mg) were well tolerated in study 2, and drug exposure was approximately proportional to dose within the studied range. Approximately 23% of total clearance (44 l h(-1)) was accounted for by renal clearance (10.2 l h(-1)). Mean volume of distribution at steady state was 194 l. Absolute bioavailability of a 100-mg oral tablet dose, by comparison with a 30-mg i.v. dose, was calculated to be 23.1%. CONCLUSIONS Maraviroc is rapidly absorbed and extensively metabolized, although unchanged maraviroc is the major circulating component in plasma and is the major excreted component after oral dosing. The pharmacokinetics of maraviroc after i.v. administration is approximately proportional over the dose range studied. Renal clearance contributes 23% of total clearance. The absolute bioavailability of 100 mg oral maraviroc is 23%.


Chemical Research in Toxicology | 2009

A Holistic Strategy for Characterizing the Safety of Metabolites through Drug Discovery and Development

Don K. Walker; Joe Brady; Deepak Dalvie; John Davis; Martin Dowty; J. Neil Duncan; Angus Nedderman; R. Scott Obach; Pat Wright

The subject of metabolites in safety testing has had much debate in the recent past and has shown itself to be a complex issue with no simple solutions to providing absolute assurance of drug safety. Much of the attention has focused on the ability to identify metabolites and then demonstrate that their risk has been adequately characterized, either through their exposure in toxicology species or, failing this, by direct safety testing. In this review, we summarize our forward operational strategy that combines the principles summarized in the FDA Guidance, together with discussions at scientific meetings and literature opinions. It is a balance between the primary goal of assuring patient safety with one of reasonable investment. A key principle in striking this balance is to build stepwise information on metabolites through the drug discovery and development continuum. This allows assessments to be made from early nonclinical studies onward as to whether or not metabolite safety is underwritten by exposure in toxicology species. This strategy does not require absolute quantitation of the metabolites in early clinical trials but relies upon comparison of relative exposures between animals and humans using the capabilities of modern analytical techniques. Through this strategy, human disproportionate metabolites can be identified to allow a decision regarding the need for absolute quantitation and direct safety testing of the metabolite. Definitive radiolabeled studies would be initiated following proof of pharmacology or efficacy in humans, and nonclinical safety coverage would be adequately assessed prior to large-scale clinical trials. In cases where metabolite safety is not supported through the parent compound toxicology program, approaches for the direct safety testing of metabolites with regard to general and reproductive toxicology, safety pharmacology, and genetic safety have been defined.


Current Drug Metabolism | 2008

In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery.

Chandra Prakash; Raman Sharma; Michelle Gleave; Angus Nedderman

Drug induced toxicity remains one of the major reasons for failures of new pharmaceuticals, and for the withdrawal of approved drugs from the market. Efforts are being made to reduce attrition of drug candidates, and to minimize their bioactivation potential in the early stages of drug discovery in order to bring safer compounds to the market. Therefore, in addition to potency and selectivity; drug candidates are now selected on the basis of acceptable metabolism/toxicology profiles in preclinical species. To support this, new approaches have been developed, which include extensive in vitro methods using human and animal hepatic cellular and subcellular systems, recombinant human drug metabolizing enzymes, increased automation for higher-throughput screens, sensitive analytical technologies and in silico computational models to assess the metabolism aspects of the new chemical entities. By using these approaches many compounds that might have serious adverse reactions associated with them are effectively eliminated before reaching clinical trials, however some toxicities such as those caused by idiosyncratic responses, are not detected until a drug is in late stages of clinical trials or has become available to the market. One of the proposed mechanisms for the development of idiosyncratic drug toxicity is the bioactivation of drugs to form reactive metabolites by drug metabolizing enzymes. This review discusses the different approaches to, and benefits of using existing in vitro techniques, for the detection of reactive intermediates in order to minimize bioactivation potential in drug discovery.


Xenobiotica | 2012

Radiolabelled mass-balance excretion and metabolism studies in laboratory animals: are they still necessary?

R. Scott Obach; Angus Nedderman; Dennis A. Smith

The conduct of excretion and metabolism studies using radiolabelled drugs in multiple laboratory animal species has been a mainstay of the suite of support activities provided by drug metabolism groups within pharmaceutical research and development organizations for decades. Drug metabolism scientists carry out exhaustive analyses of plasma and excretory matrices to comprehensively determine the profiles of metabolites in these species. While these analyses have taught us considerably regarding principles of drug metabolism and excretion, it is our contention that the routine conduct of such studies for every new drug development compound in every laboratory animal species used in toxicology studies is no longer necessary. The recently released regulatory guidance regarding metabolites and safety testing have better defined what we need to know regarding metabolite profiles in humans relative to animals. In this commentary, we propose a strategy wherein a radiolabel metabolism study is conducted only in humans, and that these data are utilized as a springboard to direct the exploration of steady-state human versus animal metabolite exposures. Such a strategy better serves the purpose of what is needed to support our understanding of the safety of a new drug candidate. Valuable expertise in drug metabolism and biotransformation can be redeployed to meet the burgeoning needs in drug design efforts to optimize structures with regard to metabolic clearance properties, understanding pharmacologically active metabolites, and reducing generation of chemically reactive metabolites.


Biopharmaceutics & Drug Disposition | 2009

Metabolites in safety testing: metabolite identification strategies in discovery and development

Angus Nedderman

The publication of the FDA MIST guidelines in 2008, together with the acknowledged importance of metabolism data for the progression of novel compounds through drug discovery and drug development, has resulted in a renewed focus on the metabolite identification strategies utilised throughout the pharmaceutical industry. With the plethora of existing and emerging technologies available to the metabolite identification scientist, it is argued that increased diligence should be applied to metabolism studies in the early stages of both drug discovery and drug development, in order to more routinely impact chemical design and to comply with the concepts of the MIST guidance without re-positioning the definitive radiolabelled studies from there typical place in late development.Furthermore, these strategic elements should be augmented by a broad and thorough understanding of the impact of the derived metabolism data, most notably considerations of absolute abundance, structure and pharmacological activity, such that they can be put into proper context as part of a holistic safety strategy.The combination of these approaches should ensure a metabolite identification strategy that successfully applies the principles of the MIST guidance throughout the discovery/development continuum and thereby provides appropriate confidence in support of human safety.


Xenobiotica | 2011

From definition to implementation: a cross-industry perspective of past, current and future MIST strategies

Angus Nedderman; Gordon J. Dear; Stephanie E. North; R. Scott Obach; David Higton

The article describes and discusses the evolution of strategies to characterize metabolites in support of safety studies over the last 40 years, as well as future trends. Approaches to derive qualitative and quantitative information on metabolites are described, with a particular focus on the comparison of options to quantify metabolites in the absence of authentic standards. Current strategies to assess metabolite profiles are summarized into four general approaches and compared against a number of key criteria. Potential future strategies are discussed, including the use of clinical samples as the starting point for metabolite investigations, minimizing the need for animal radiolabelled studies and establishing metabolite safety without radiolabelled studies in animals or human.


Journal of Pharmaceutical and Biomedical Analysis | 2004

The use of 96-well Scintiplates to facilitate definitive metabolism studies for drug candidates

Angus Nedderman; Mark E. Savage; Katharine L White; D. K. Walker

Semi-quantitative analysis of the drug-related components in biological samples collected during definitive metabolism studies using radiolabelled drug candidates is commonly achieved by HPLC profiling, using either on-line radiochemical detection or off-line liquid scintillation counting (LSC) following collection of the HPLC eluent into vials. However, although the use of LSC with vials has high sensitivity, the approach is time-consuming, laborious and destructive, whilst on-line detection methods are inappropriate for samples with low-levels of radioactivity (commonly the case with plasma samples). The use of 96-well microtitre plates (Scintiplates) for fraction collection during HPLC profiling provides a sensitive, effective and efficient alternative method for the semi-quantitative analysis of radiolabelled components in biological samples. Furthermore, the approach is non-destructive, such that subsequent identification of the isolated components can be achieved. Although the Scintiplate methodology is not appropriate for the analysis of excreta samples, where quenching of the radiochemical signal by endogenous components was observed, the approach was demonstrated to be valid for the relative quantification of [14C]-labelled material in plasma samples for all species investigated. In addition, good sensitivity was observed, with a counting efficiency of 79% for [14C], such that a drug-related component accounting for 10-15 dpm is quantifiable. The utility of the methodology for profiling circulating metabolites was demonstrated by the analysis of a rat plasma sample following oral administration of [14C]-UK-349,862. The Scintiplate approach and subsequent mass spectrometric analysis resulted in the relative quantitation and specific characterisation of circulating metabolites accounting for 93% of the total plasma radioactivity.


Drug Metabolism and Disposition | 2010

Excretion and Metabolism of Lersivirine (5-{[3,5-Diethyl-1-(2-hydroxyethyl)(3,5-14C2)-1H-pyrazol-4-yl]oxy}benzene-1,3-dicarbonitrile), a Next-Generation Non-Nucleoside Reverse Transcriptase Inhibitor, after Administration of [14C]Lersivirine to Healthy Volunteers

Manoli Vourvahis; Michelle Gleave; Angus Nedderman; Ruth Hyland; Iain Gardner; Martin Howard; Sarah Kempshall; Claire Collins; Robert LaBadie

Lersivirine [UK-453,061, 5-((3,5-diethyl-1-(2-hydroxyethyl)(3,5-14C2)-1H-pyrazol-4-yl)oxy)benzene-1,3-dicarbonitrile] is a next-generation non-nucleoside reverse transcriptase inhibitor, with a unique binding interaction within the reverse transcriptase binding pocket. Lersivirine has shown antiviral activity and is well tolerated in HIV-infected and healthy subjects. This open-label, Phase I study investigated the absorption, metabolism, and excretion of a single oral 500-mg dose of [14C]lersivirine (parent drug) and characterized the plasma, fecal, and urinary radioactivity of lersivirine and its metabolites in four healthy male volunteers. Plasma Cmax for total radioactivity and unchanged lersivirine typically occurred between 0.5 and 3 h postdose. The majority of radioactivity was excreted in urine (∼80%) with the remainder excreted in the feces (∼20%). The blood/plasma ratio of total drug-derived radioactivity [area under the plasma concentration-time profile from time zero extrapolated to infinite time (AUCinf)] was 0.48, indicating that radioactive material was distributed predominantly into plasma. Lersivirine was extensively metabolized, primarily by UDP glucuronosyltransferase- and cytochrome P450-dependent pathways, with 22 metabolites being identified in this study. Analysis of precipitated plasma revealed that the lersivirine-glucuronide conjugate was the major circulating component (45% of total radioactivity), whereas unchanged lersivirine represented 13% of total plasma radioactivity. In vitro studies showed that UGT2B7 and CYP3A4 are responsible for the majority of lersivirine metabolism in humans.


Bioanalysis | 2010

Looking back through the MIST: a perspective of evolving strategies and key focus areas for metabolite safety analysis.

Angus Nedderman; Pat Wright

The publication of the US FDA MIST guidance document in 2008 reignited the debate around the most appropriate strategies to underwrite metabolite safety for novel compounds. Whilst some organizations have suggested that the guidelines necessitate a paradigm shift to more thorough metabolite analysis during early development, an evaluation of historical practices shows that the principles of the guidelines have always largely underpinned metabolism studies within the pharmaceutical industry. Therefore, it is argued that existing practices, when coupled to appropriate emerging analytical tools and a case-by-case consideration of the relevance of the generated metabolism data in terms of structure, physicochemisty, abundance and activity, represent a fit-for-purpose approach to metabolite-safety assessments.

Collaboration


Dive into the Angus Nedderman's collaboration.

Researchain Logo
Decentralizing Knowledge