Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anika Oellrich is active.

Publication


Featured researches published by Anika Oellrich.


PLOS Biology | 2015

Finding Our Way through Phenotypes

Andrew R. Deans; Suzanna E. Lewis; Eva Huala; Salvatore S. Anzaldo; Michael Ashburner; James P. Balhoff; David C. Blackburn; Judith A. Blake; J. Gordon Burleigh; Bruno Chanet; Laurel Cooper; Mélanie Courtot; Sándor Csösz; Hong Cui; Wasila M. Dahdul; Sandip Das; T. Alexander Dececchi; Agnes Dettai; Rui Diogo; Robert E. Druzinsky; Michel Dumontier; Nico M. Franz; Frank Friedrich; George V. Gkoutos; Melissa Haendel; Luke J. Harmon; Terry F. Hayamizu; Yongqun He; Heather M. Hines; Nizar Ibrahim

Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.


Genome Research | 2014

Improved exome prioritization of disease genes through cross-species phenotype comparison.

Peter N. Robinson; Sebastian Köhler; Anika Oellrich; Sanger Mouse Genetics; Kai Wang; Christopher J. Mungall; Suzanna E. Lewis; Nicole L. Washington; Sebastian Bauer; Dominik Seelow; Peter Krawitz; Christian Gilissen; Melissa Haendel; Damian Smedley

Numerous new disease-gene associations have been identified by whole-exome sequencing studies in the last few years. However, many cases remain unsolved due to the sheer number of candidate variants remaining after common filtering strategies such as removing low quality and common variants and those deemed unlikely to be pathogenic. The observation that each of our genomes contains about 100 genuine loss-of-function variants makes identification of the causative mutation problematic when using these strategies alone. We propose using the wealth of genotype to phenotype data that already exists from model organism studies to assess the potential impact of these exome variants. Here, we introduce PHenotypic Interpretation of Variants in Exomes (PHIVE), an algorithm that integrates the calculation of phenotype similarity between human diseases and genetically modified mouse models with evaluation of the variants according to allele frequency, pathogenicity, and mode of inheritance approaches in our Exomiser tool. Large-scale validation of PHIVE analysis using 100,000 exomes containing known mutations demonstrated a substantial improvement (up to 54.1-fold) over purely variant-based (frequency and pathogenicity) methods with the correct gene recalled as the top hit in up to 83% of samples, corresponding to an area under the ROC curve of >95%. We conclude that incorporation of phenotype data can play a vital role in translational bioinformatics and propose that exome sequencing projects should systematically capture clinical phenotypes to take advantage of the strategy presented here.


Nature Reviews Genetics | 2012

Text-mining solutions for biomedical research: enabling integrative biology

Dietrich Rebholz-Schuhmann; Anika Oellrich; Robert Hoehndorf

In response to the unbridled growth of information in literature and biomedical databases, researchers require efficient means of handling and extracting information. As well as providing background information for research, scientific publications can be processed to transform textual information into database content or complex networks and can be integrated with existing knowledge resources to suggest novel hypotheses. Information extraction and text data analysis can be particularly relevant and helpful in genetics and biomedical research, in which up-to-date information about complex processes involving genes, proteins and phenotypes is crucial. Here we explore the latest advancements in automated literature analysis and its contribution to innovative research approaches.


Database | 2013

PhenoDigm: analyzing curated annotations to associate animal models with human diseases

Damian Smedley; Anika Oellrich; Sebastian Köhler; Barbara J. Ruef; Monte Westerfield; Peter N. Robinson; Suzanna E. Lewis; Christopher J. Mungall

The ultimate goal of studying model organisms is to translate what is learned into useful knowledge about normal human biology and disease to facilitate treatment and early screening for diseases. Recent advances in genomic technologies allow for rapid generation of models with a range of targeted genotypes as well as their characterization by high-throughput phenotyping. As an abundance of phenotype data become available, only systematic analysis will facilitate valid conclusions to be drawn from these data and transferred to human diseases. Owing to the volume of data, automated methods are preferable, allowing for a reliable analysis of the data and providing evidence about possible gene–disease associations. Here, we propose Phenotype comparisons for DIsease Genes and Models (PhenoDigm), as an automated method to provide evidence about gene–disease associations by analysing phenotype information. PhenoDigm integrates data from a variety of model organisms and, at the same time, uses several intermediate scoring methods to identify only strongly data-supported gene candidates for human genetic diseases. We show results of an automated evaluation as well as selected manually assessed examples that support the validity of PhenoDigm. Furthermore, we provide guidance on how to browse the data with PhenoDigm’s web interface and illustrate its usefulness in supporting research. Database URL: http://www.sanger.ac.uk/resources/databases/phenodigm


BMC Bioinformatics | 2010

Relations as patterns: bridging the gap between OBO and OWL

Robert Hoehndorf; Anika Oellrich; Michel Dumontier; Janet Kelso; Dietrich Rebholz-Schuhmann; Heinrich Herre

BackgroundMost biomedical ontologies are represented in the OBO Flatfile Format, which is an easy-to-use graph-based ontology language. The semantics of the OBO Flatfile Format 1.2 enforces a strict predetermined interpretation of relationship statements between classes. It does not allow flexible specifications that provide better approximations of the intuitive understanding of the considered relations. If relations cannot be accurately expressed then ontologies built upon them may contain false assertions and hence lead to false inferences. Ontologies in the OBO Foundry must formalize the semantics of relations according to the OBO Relationship Ontology (RO). Therefore, being able to accurately express the intended meaning of relations is of crucial importance. Since the Web Ontology Language (OWL) is an expressive language with a formal semantics, it is suitable to de ne the meaning of relations accurately.ResultsWe developed a method to provide definition patterns for relations between classes using OWL and describe a novel implementation of the RO based on this method. We implemented our extension in software that converts ontologies in the OBO Flatfile Format to OWL, and also provide a prototype to extract relational patterns from OWL ontologies using automated reasoning. The conversion software is freely available at http://bioonto.de/obo2owl, and can be accessed via a web interface.ConclusionsExplicitly defining relations permits their use in reasoning software and leads to a more flexible and powerful way of representing biomedical ontologies. Using the extended langua0067e and semantics avoids several mistakes commonly made in formalizing biomedical ontologies, and can be used to automatically detect inconsistencies. The use of our method enables the use of graph-based ontologies in OWL, and makes complex OWL ontologies accessible in a graph-based form. Thereby, our method provides the means to gradually move the representation of biomedical ontologies into formal knowledge representation languages that incorporates an explicit semantics. Our method facilitates the use of OWL-based software in the back-end while ontology curators may continue to develop ontologies with an OBO-style front-end.


Bioinformatics | 2010

Interoperability between phenotype and anatomy ontologies

Robert Hoehndorf; Anika Oellrich; Dietrich Rebholz-Schuhmann

Motivation: Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. Results: We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. Availability: http://bioonto.de/pmwiki.php/Main/PheneOntology Contact: [email protected]


PLOS ONE | 2011

Interoperability between Biomedical Ontologies through Relation Expansion, Upper-Level Ontologies and Automatic Reasoning

Robert Hoehndorf; Michel Dumontier; Anika Oellrich; Dietrich Rebholz-Schuhmann; Paul N. Schofield; Georgios V. Gkoutos

Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.


Bioinformatics | 2011

A common layer of interoperability for biomedical ontologies based on OWL EL

Robert Hoehndorf; Michel Dumontier; Anika Oellrich; Sarala M. Wimalaratne; Dietrich Rebholz-Schuhmann; Paul N. Schofield; Georgios Vasileios Gkoutos

MOTIVATION Ontologies are essential in biomedical research due to their ability to semantically integrate content from different scientific databases and resources. Their application improves capabilities for querying and mining biological knowledge. An increasing number of ontologies is being developed for this purpose, and considerable effort is invested into formally defining them in order to represent their semantics explicitly. However, current biomedical ontologies do not facilitate data integration and interoperability yet, since reasoning over these ontologies is very complex and cannot be performed efficiently or is even impossible. We propose the use of less expressive subsets of ontology representation languages to enable efficient reasoning and achieve the goal of genuine interoperability between ontologies. RESULTS We present and evaluate EL Vira, a framework that transforms OWL ontologies into the OWL EL subset, thereby enabling the use of tractable reasoning. We illustrate which OWL constructs and inferences are kept and lost following the conversion and demonstrate the performance gain of reasoning indicated by the significant reduction of processing time. We applied EL Vira to the open biomedical ontologies and provide a repository of ontologies resulting from this conversion. EL Vira creates a common layer of ontological interoperability that, for the first time, enables the creation of software solutions that can employ biomedical ontologies to perform inferences and answer complex queries to support scientific analyses. AVAILABILITY AND IMPLEMENTATION The EL Vira software is available from http://el-vira.googlecode.com and converted OBO ontologies and their mappings are available from http://bioonto.gen.cam.ac.uk/el-ont.


Database | 2015

Automatic concept recognition using the Human Phenotype Ontology reference and test suite corpora

Tudor Groza; Sebastian Köhler; Sandra C. Doelken; Nigel Collier; Anika Oellrich; Damian Smedley; Francisco M. Couto; Gareth Baynam; Andreas Zankl; Peter N. Robinson

Concept recognition tools rely on the availability of textual corpora to assess their performance and enable the identification of areas for improvement. Typically, corpora are developed for specific purposes, such as gene name recognition. Gene and protein name identification are longstanding goals of biomedical text mining, and therefore a number of different corpora exist. However, phenotypes only recently became an entity of interest for specialized concept recognition systems, and hardly any annotated text is available for performance testing and training. Here, we present a unique corpus, capturing text spans from 228 abstracts manually annotated with Human Phenotype Ontology (HPO) concepts and harmonized by three curators, which can be used as a reference standard for free text annotation of human phenotypes. Furthermore, we developed a test suite for standardized concept recognition error analysis, incorporating 32 different types of test cases corresponding to 2164 HPO concepts. Finally, three established phenotype concept recognizers (NCBO Annotator, OBO Annotator and Bio-LarK CR) were comprehensively evaluated, and results are reported against both the text corpus and the test suites. The gold standard and test suites corpora are available from http://bio-lark.org/hpo_res.html. Database URL: http://bio-lark.org/hpo_res.html


PLOS ONE | 2012

Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases.

Anika Oellrich; Robert Hoehndorf; Georgios V. Gkoutos; Dietrich Rebholz-Schuhmann

Despite considerable progress in understanding the molecular origins of hereditary human diseases, the molecular basis of several thousand genetic diseases still remains unknown. High-throughput phenotype studies are underway to systematically assess the phenotype outcome of targeted mutations in model organisms. Thus, comparing the similarity between experimentally identified phenotypes and the phenotypes associated with human diseases can be used to suggest causal genes underlying a disease. In this manuscript, we present a method for disease gene prioritization based on comparing phenotypes of mouse models with those of human diseases. For this purpose, either human disease phenotypes are “translated” into a mouse-based representation (using the Mammalian Phenotype Ontology), or mouse phenotypes are “translated” into a human-based representation (using the Human Phenotype Ontology). We apply a measure of semantic similarity and rank experimentally identified phenotypes in mice with respect to their phenotypic similarity to human diseases. Our method is evaluated on manually curated and experimentally verified gene–disease associations for human and for mouse. We evaluate our approach using a Receiver Operating Characteristic (ROC) analysis and obtain an area under the ROC curve of up to . Furthermore, we are able to confirm previous results that the Vax1 gene is involved in Septo-Optic Dysplasia and suggest Gdf6 and Marcks as further potential candidates. Our method significantly outperforms previous phenotype-based approaches of prioritizing gene–disease associations. To enable the adaption of our method to the analysis of other phenotype data, our software and prioritization results are freely available under a BSD licence at http://code.google.com/p/phenomeblast/wiki/CAMP. Furthermore, our method has been integrated in PhenomeNET and the results can be explored using the PhenomeBrowser at http://phenomebrowser.net.

Collaboration


Dive into the Anika Oellrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Hoehndorf

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Damian Smedley

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tudor Groza

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge