Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Dobson is active.

Publication


Featured researches published by Richard Dobson.


Genome Biology | 2012

Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood

Matthew N. Davies; Manuela Volta; Ruth Pidsley; Katie Lunnon; Abhishek Dixit; Simon Lovestone; Cristian Coarfa; R. Alan Harris; Aleksandar Milosavljevic; Claire Troakes; Safa Al-Sarraj; Richard Dobson; Leonard C. Schalkwyk; Jonathan Mill

BackgroundDynamic changes to the epigenome play a critical role in establishing and maintaining cellular phenotype during differentiation, but little is known about the normal methylomic differences that occur between functionally distinct areas of the brain. We characterized intra- and inter-individual methylomic variation across whole blood and multiple regions of the brain from multiple donors.ResultsDistinct tissue-specific patterns of DNA methylation were identified, with a highly significant over-representation of tissue-specific differentially methylated regions (TS-DMRs) observed at intragenic CpG islands and low CG density promoters. A large proportion of TS-DMRs were located near genes that are differentially expressed across brain regions. TS-DMRs were significantly enriched near genes involved in functional pathways related to neurodevelopment and neuronal differentiation, including BDNF, BMP4, CACNA1A, CACA1AF, EOMES, NGFR, NUMBL, PCDH9, SLIT1, SLITRK1 and SHANK3. Although between-tissue variation in DNA methylation was found to greatly exceed between-individual differences within any one tissue, we found that some inter-individual variation was reflected across brain and blood, indicating that peripheral tissues may have some utility in epidemiological studies of complex neurobiological phenotypes.ConclusionsThis study reinforces the importance of DNA methylation in regulating cellular phenotype across tissues, and highlights genomic patterns of epigenetic variation across functionally distinct regions of the brain, providing a resource for the epigenetics and neuroscience research communities.


American Journal of Human Genetics | 2008

Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia.

Chris Wallace; Stephen Newhouse; Peter S. Braund; Feng Zhang; Martin D. Tobin; Mario Falchi; Kourosh R. Ahmadi; Richard Dobson; Ana Carolina B. Marçano; Cother Hajat; Paul R. Burton; Panagiotis Deloukas; Morris J. Brown; John M. C. Connell; Anna F. Dominiczak; G. Mark Lathrop; John Webster; Martin Farrall; Tim D. Spector; Nilesh J. Samani; Mark J. Caulfield; Patricia B. Munroe

Many common diseases are accompanied by disturbances in biochemical traits. Identifying the genetic determinants could provide novel insights into disease mechanisms and reveal avenues for developing new therapies. Here, we report a genome-wide association analysis for commonly measured serum and urine biochemical traits. As part of the WTCCC, 500,000 SNPs genome wide were genotyped in 1955 hypertensive individuals characterized for 25 serum and urine biochemical traits. For each trait, we assessed association with individual SNPs, adjusting for age, sex, and BMI. Lipid measurements were further examined in a meta-analysis of genome-wide data from a type 2 diabetes scan. The most promising associations were examined in two epidemiological cohorts. We discovered association between serum urate and SLC2A9, a glucose transporter (p = 2 x 10(-15)) and confirmed this in two independent cohorts, GRAPHIC study (p = 9 x 10(-15)) and TwinsUK (p = 8 x 10(-19)). The odds ratio for hyperuricaemia (defined as urate >0.4 mMol/l) is 1.89 (95% CI = 1.36-2.61) per copy of common allele. We also replicated many genes previously associated with serum lipids and found previously recognized association between LDL levels and SNPs close to genes encoding PSRC1 and CELSR2 (p = 1 x 10(-7)). The common allele was associated with a 6% increase in nonfasting serum LDL. This region showed increased association in the meta-analysis (p = 4 x 10(-14)). This finding provides a potential biological mechanism for the recent association of this same allele of the same SNP with increased risk of coronary disease.


PLOS Medicine | 2008

SLC2A9 Is a High-Capacity Urate Transporter in Humans

Mark J. Caulfield; Patricia B. Munroe; Deb O'Neill; Kate Witkowska; Fadi J. Charchar; Manuel Doblado; Sarah Evans; Susana Eyheramendy; Abiodun Onipinla; Philip Howard; Sue Shaw-Hawkins; Richard Dobson; Chris Wallace; Stephen Newhouse; Morris J. Brown; John M. C. Connell; Anna Dominiczak; Martin Farrall; G. Mark Lathrop; Nilesh J. Samani; Meena Kumari; Michael Marmot; Eric Brunner; John Chambers; Paul Elliott; Jaspal S. Kooner; Maris Laan; Elin Org; Gudrun Veldre; Margus Viigimaa

Background Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucose transporter, and it has two splice variants that are highly expressed in the proximal nephron, a key site for urate handling in the kidney. We investigated whether SLC2A9 is a functional urate transporter that contributes to the longstanding association between urate and blood pressure in man. Methods and Findings We expressed both SLC2A9 splice variants in Xenopus laevis oocytes and found both isoforms mediate rapid urate fluxes at concentration ranges similar to physiological serum levels (200–500 μM). Because SLC2A9 is a known facilitative glucose transporter, we also tested whether glucose or fructose influenced urate transport. We found that urate is transported by SLC2A9 at rates 45- to 60-fold faster than glucose, and demonstrated that SLC2A9-mediated urate transport is facilitated by glucose and, to a lesser extent, fructose. In addition, transport is inhibited by the uricosuric benzbromarone in a dose-dependent manner (K i = 27 μM). Furthermore, we found urate uptake was at least 2-fold greater in human embryonic kidney (HEK) cells overexpressing SLC2A9 splice variants than nontransfected kidney cells. To confirm that our findings were due to SLC2A9, and not another urate transporter, we showed that urate transport was diminished by SLC2A9-targeted siRNA in a second mammalian cell line. In a cohort of men we showed that genetic variants of SLC2A9 are associated with reduced urinary urate clearance, which fits with common variation at SLC2A9 leading to increased serum urate. We found no evidence of association with hypertension (odds ratio 0.98, 95% confidence interval [CI] 0.9 to 1.05, p > 0.33) by meta-analysis of an SLC2A9 variant in six case–control studies including 11,897 participants. In a separate meta-analysis of four population studies including 11,629 participants we found no association of SLC2A9 with systolic (effect size −0.12 mm Hg, 95% CI −0.68 to 0.43, p = 0.664) or diastolic blood pressure (effect size −0.03 mm Hg, 95% CI −0.39 to 0.31, p = 0.82). Conclusions This study provides evidence that SLC2A9 splice variants act as high-capacity urate transporters and is one of the first functional characterisations of findings from genome-wide association scans. We did not find an association of the SLC2A9 gene with blood pressure in this study. Our findings suggest potential pathogenic mechanisms that could offer a new drug target for gout.


The Lancet | 2003

Genome-wide mapping of human loci for essential hypertension

Mark J. Caulfield; Patricia B. Munroe; J Pembroke; Nilesh J. Samani; Anna F. Dominiczak; Morris J. Brown; John Webster; Peter J. Ratcliffe; Suzanne O'Shea; Jeanette C. Papp; Elizabeth Taylor; Richard Dobson; Joanne Knight; Stephen J. Newhouse; Joel Hooper; Wai Lee; Nick J.R. Brain; David G. Clayton; G. Mark Lathrop; Martin Farrall; John M. C. Connell; Nigel Benjamin

BACKGROUND Blood pressure may contribute to 50% of the global cardiovascular disease epidemic. By understanding the genes predisposing to common disorders such as human essential hypertension we may gain insights into novel pathophysiological mechanisms and potential therapeutic targets. In the Medical Research Council BRItish Genetics of HyperTension (BRIGHT) study, we aim to identify these genetic factors by scanning the human genome for susceptibility genes for essential hypertension. We describe the results of a genome scan for hypertension in a large white European population. METHODS We phenotyped 2010 affected sibling pairs drawn from 1599 severely hypertensive families, and completed a 10 centimorgan genome-wide scan. After rigorous quality control, we analysed the genotypic data by non-parametric linkage, which tests whether genes are shared in excess among the affected sibling pairs. Lod scores, calculated at regular points along each chromosome, were used to assess the support for linkage. FINDINGS Linkage analysis identified a principle locus on chromosome 6q, with a lod score of 3.21 that attained genome-wide significance (p=0.042). The inclusion of three further loci with lod scores higher than 1.57 (2q, 5q, and 9q) also show genome-wide significance (p=0.017) when assessed under a locus-counting analysis. INTERPRETATION These findings imply that human essential hypertension has an oligogenic element (a few genes may be involved in determination of the trait) possibly superimposed on more minor genetic effects, and that several genes may be tractable to a positional cloning strategy.


Infection and Immunity | 2002

Identification of Major Outer Surface Proteins of Streptococcus agalactiae

Martin John Glenton Hughes; Joanne Christine Moore; Jonathan Douglas Lane; R. Wilson; Philippa Pribul; Zabin Younes; Richard Dobson; Paul Everest; Andrew J. Reason; Joanne M. Redfern; Fiona M. Greer; Thanai Paxton; Maria Panico; Howard R. Morris; Robert Feldman; Joseph David Santangelo

ABSTRACT To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were sequenced and cloned. These were ornithine carbamoyltransferase, phosphoglycerate kinase, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, purine nucleoside phosphorylase, enolase, and glucose-6-phosphate isomerase. Using a gram-positive expression system, we have overexpressed two of these proteins in an in vitro system. These recombinant, purified proteins were used to raise antisera. The identification of these proteins as residing on the outer surface was confirmed by the ability of the antisera to react against whole, live bacteria. Further, in a neonatal-animal model system, we demonstrate that some of these sera are protective against lethal doses of bacteria. These studies demonstrate the successful application of proteomics as a technique for identifying vaccine candidates.


Human Molecular Genetics | 2009

Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations

Elin Org; Susana Eyheramendy; Peeter Juhanson; Christian Gieger; Peter Lichtner; Norman Klopp; Gudrun Veldre; Angela Döring; Margus Viigimaa; Siim Sõber; Kärt Tomberg; Gertrud Eckstein; Piret Kelgo; Tiina Rebane; Sue Shaw-Hawkins; Philip Howard; Abiodun Onipinla; Richard Dobson; Stephen Newhouse; Morris J. Brown; Anna F. Dominiczak; John M. C. Connell; Nilesh J. Samani; Martin Farrall; Bright; Mark J. Caulfield; Patricia B. Munroe; Thomas Illig; H.-Erich Wichmann; Thomas Meitinger

Hypertension is a complex disease that affects a large proportion of adult population. Although approximately half of the inter-individual variance in blood pressure (BP) level is heritable, identification of genes responsible for its regulation has remained challenging. Genome-wide association study (GWAS) is a novel approach to search for genetic variants contributing to complex diseases. We conducted GWAS for three BP traits [systolic and diastolic blood pressure (SBP and DBP); hypertension (HYP)] in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) S3 cohort (n = 1644) recruited from general population in Southern Germany. GWAS with 395 912 single nucleotide polymorphisms (SNPs) identified an association between BP traits and a common variant rs11646213 (T/A) upstream of the CDH13 gene at 16q23.3. The initial associations with HYP and DBP were confirmed in two other European population-based cohorts: KORA S4 (Germans) and HYPEST (Estonians). The associations between rs11646213 and three BP traits were replicated in combined analyses (dominant model: DBP, P = 5.55 × 10–5, effect –1.40 mmHg; SBP, P = 0.007, effect –1.56 mmHg; HYP, P = 5.30 × 10−8, OR = 0.67). Carriers of the minor allele A had a decreased risk of hypertension. A non-significant trend for association was also detected with severe family based hypertension in the BRIGHT sample (British). The novel susceptibility locus, CDH13, encodes for an adhesion glycoprotein T-cadherin, a regulator of vascular wall remodeling and angiogenesis. Its function is compatible with the BP biology and may improve the understanding of the pathogenesis of hypertension.


Human Molecular Genetics | 2010

Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing

Graham A. Heap; Jennie H. M. Yang; Kate Downes; Barry Healy; Karen A. Hunt; Nicholas A. Bockett; Lude Franke; P Dubois; Charles A. Mein; Richard Dobson; Thomas J. Albert; Matthew Rodesch; David G. Clayton; John A. Todd; David A. van Heel; Vincent Plagnol

Many disease-associated variants identified by genome-wide association (GWA) studies are expected to regulate gene expression. Allele-specific expression (ASE) quantifies transcription from both haplotypes using individuals heterozygous at tested SNPs. We performed deep human transcriptome-wide resequencing (RNA-seq) for ASE analysis and expression quantitative trait locus discovery. We resequenced double poly(A)-selected RNA from primary CD4+ T cells (n = 4 individuals, both activated and untreated conditions) and developed tools for paired-end RNA-seq alignment and ASE analysis. We generated an average of 20 million uniquely mapping 45 base reads per sample. We obtained sufficient read depth to test 1371 unique transcripts for ASE. Multiple biases inflate the false discovery rate which we estimate to be ∼50% for random SNPs. However, after controlling for these biases and considering the subset of SNPs that pass HapMap QC, 4.6% of heterozygous SNP-sample pairs show evidence of imbalance (P < 0.001). We validated four findings by both bacterial cloning and Sanger sequencing assays. We also found convincing evidence for allelic imbalance at multiple reporter exonic SNPs in CD6 for two samples heterozygous at the multiple sclerosis-associated variant rs17824933, linking GWA findings with variation in gene expression. Finally, we show in CD4+ T cells from a further individual that high-throughput sequencing of genomic DNA and RNA-seq following enrichment for targeted gene sequences by sequence capture methods offers an unbiased means to increase the read depth for transcripts of interest, and therefore a method to investigate the regulatory role of many disease-associated genetic variants.


Alzheimers & Dementia | 2014

Plasma proteins predict conversion to dementia from prodromal disease

Abdul Hye; Alison L. Baird; Nicholas J. Ashton; Chantal Bazenet; Rufina Leung; Eric Westman; Andrew Simmons; Richard Dobson; Martina Sattlecker; Michelle K. Lupton; Katie Lunnon; Aoife Keohane; Malcolm Ward; Hans Dieter Zucht; Danielle Pepin; Wei Zheng; Alan Tunnicliffe; Jill C. Richardson; Serge Gauthier; Hilkka Soininen; Iwona Kloszewska; Patrizia Mecocci; Magda Tsolaki; Bruno Vellas; Simon Lovestone

The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia.


Journal of Alzheimer's Disease | 2013

Candidate Blood Proteome Markers of Alzheimer's Disease Onset and Progression: A Systematic Review and Replication Study

Steven John Kiddle; Martina Sattlecker; Petroula Proitsi; Andrew Simmons; Eric Westman; Chantal Bazenet; Sally K. Nelson; Stephen E. Williams; Angela Hodges; Caroline Johnston; Hilkka Soininen; Iwona Kloszewska; Patrizia Mecocci; Magda Tsolaki; Bruno Vellas; Stephen Newhouse; Simon Lovestone; Richard Dobson

A blood-based protein biomarker, or set of protein biomarkers, that could predict onset and progression of Alzheimers disease (AD) would have great utility; potentially clinically, but also for clinical trials and especially in the selection of subjects for preventative trials. We reviewed a comprehensive list of 21 published discovery or panel-based (> 100 proteins) blood proteomics studies of AD, which had identified a total of 163 candidate biomarkers. Few putative blood-based protein biomarkers replicate in independent studies but we found that some proteins do appear in multiple studies; for example, four candidate biomarkers are found to associate with AD-related phenotypes in five independent research cohorts in these 21 studies: α-1-antitrypsin, α-2-macroglobulin, apolipoprotein E, and complement C3. Using SomaLogics SOMAscan proteomics technology, we were able to conduct a large-scale replication study for 94 of the 163 candidate biomarkers from these 21 published studies in plasma samples from 677 subjects from the AddNeuroMed (ANM) and the Alzheimers Research UK/Maudsley BRC Dementia Case Registry at Kings Health Partners (ARUK/DCR) research cohorts. Nine of the 94 previously reported candidates were found to associate with AD-related phenotypes (False Discovery Rate (FDR) q-value < 0.1). These proteins show sufficient replication to be considered for further investigation as a biomarker set. Overall, we show that there are some signs of a replicable signal in the range of proteins identified in previous studies and we are able to further replicate some of these. This suggests that AD pathology does affect the blood proteome with some consistency.


PLOS ONE | 2009

Targeting 160 Candidate Genes for Blood Pressure Regulation with a Genome-Wide Genotyping Array

Siim Sõber; Elin Org; Katrin Kepp; Peeter Juhanson; Susana Eyheramendy; Christian Gieger; Peter Lichtner; Norman Klopp; Gudrun Veldre; Margus Viigimaa; Angela Döring; Margus Putku; Piret Kelgo; Sue Shaw-Hawkins; Philip Howard; Abiodun Onipinla; Richard Dobson; Stephen Newhouse; Morris J. Brown; Anna F. Dominiczak; John M. C. Connell; Nilesh J. Samani; Martin Farrall; Mark J. Caulfield; Patricia B. Munroe; Thomas Illig; H.-Erich Wichmann; Thomas Meitinger; Maris Laan

The outcome of Genome-Wide Association Studies (GWAS) has challenged the field of blood pressure (BP) genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany) to address (i) SNP coverage in 160 BP candidate genes; (ii) the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region±10 kb) covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11) to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P<10−3) were detected for the genes, where >50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb) revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15×10−5), the strength of some detected associations was close to this level: rs10889553 (LEPR) and systolic BP (SBP) (P = 4.5×10−5) as well as rs10954174 (LEP) and diastolic BP (DBP) (P = 5.20×10−5). In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1) revealed considerable association (P<10−3) either with SBP, DBP, and/or hypertension (HYP). None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT). However, supportive evidence for the association of rs10889553 (LEPR) and rs11195419 (ADRA2A) with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.

Collaboration


Dive into the Richard Dobson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia B. Munroe

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Iwona Kloszewska

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilkka Soininen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Mark J. Caulfield

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge