Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anindita Gayen is active.

Publication


Featured researches published by Anindita Gayen.


Angewandte Chemie | 2013

Ligand‐Induced Conformational Changes of the Multidrug Resistance Transporter EmrE Probed by Oriented Solid‐State NMR Spectroscopy

Anindita Gayen; James R. Banigan; Nathaniel J. Traaseth

We used oriented solid-state NMR spectroscopy and biochemical cross-linking experiments to demonstrate that the ligand-free membrane protein transporter EmrE forms anti-parallel dimers with different monomer tilt angles relative to the lipid bilayer. Our results also show the subtle conformational changes efflux pumps experience in response to drug binding and emphasize the importance of studying membrane proteins in a fluid bilayer environment.


Journal of the American Chemical Society | 2014

Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance

Min Kyu Cho; Anindita Gayen; James R. Banigan; Maureen Leninger; Nathaniel J. Traaseth

EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing structural conformations at an exchange rate (kex) of ∼300 s–1 at 37 °C (millisecond motions), which is ∼50-fold faster relative to the tetraphenylphosphonium (TPP+) substrate-bound form of the protein. These observables provide quantitative evidence that the rate-limiting step in the TPP+ transport cycle is not the outward–inward conformational change in the absence of drug. In addition, using differential scanning calorimetry, we found that the width of the gel-to-liquid crystalline phase transition was 2 °C broader in the absence of the TPP+ substrate versus its presence, which suggested that changes in transporter dynamics can impact the phase properties of the membrane. Interestingly, experiments with cross-linked EmrE showed that the millisecond inward-open to outward-open dynamics was not the culprit of the broadening. Instead, the calorimetry and NMR data supported the conclusion that faster time scale structural dynamics (nanosecond–microsecond) were the source and therefore impart the conformationally plastic character of native EmrE capable of binding structurally diverse substrates. These findings provide a clear example how differences in membrane protein transporter structural dynamics between drug-free and bound states can have a direct impact on the physical properties of the lipid bilayer in an allosteric fashion.


Journal of Biomolecular NMR | 2013

Combination of 15N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: Application to the multidrug resistance protein EmrE

James R. Banigan; Anindita Gayen; Nathaniel J. Traaseth

Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of 15N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the 15N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.


Nature Chemical Biology | 2016

Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE

Anindita Gayen; Maureen Leninger; Nathaniel J. Traaseth

Secondary active transport proteins play a central role in conferring bacterial multidrug resistance. In this work, we investigated the proton-coupled transport mechanism for the Escherichia coli drug efflux pump EmrE using nuclear magnetic resonance (NMR) spectroscopy. Our results show that the global conformational motions necessary for transport are modulated in an allosteric fashion by the protonation state of a membrane-embedded glutamate residue. These observations directly correlate with the resistance phenotype for EmrE and the E14D mutant as a function of pH. Furthermore, our results support a model in which the pH gradient across the inner membrane of E. coli may be used on a mechanistic level to shift the equilibrium of the transporter in favor of an inward-open resting conformation poised for drug binding.


Biochimica et Biophysica Acta | 2015

Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy☆

James R. Banigan; Anindita Gayen; Nathaniel J. Traaseth

Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational diffusion of the protein that can affect the NMR spectral observables. In this regard, temperature plays a fundamental role in modulating the phase properties of the lipids, which directly influences the rotational diffusion rate of the protein in the bilayer. In fact, it is well established that below the main phase transition temperature of the lipid bilayer the proteins motion is significantly slowed while above this critical temperature the rate is increased. In this article, we carried out a systematic comparison of the signal intensity and spectral resolution as a function of temperature using magic-angle-spinning (MAS) solid-state NMR spectroscopy. These observables were directly correlated with the relative fluidity of the lipid bilayer as inferred from differential scanning calorimetry (DSC). We applied our hybrid biophysical approach to two polytopic membrane proteins from the small multidrug resistance family (EmrE and SugE) reconstituted into model membrane lipid bilayers (DMPC-14:0 and DPPC-16:0). From these experiments, we conclude that the rotational diffusion giving optimal spectral resolution occurs at a bilayer fluidity of ~5%, which corresponds to the percentage of lipids in the fluid or liquid-crystalline fraction. At the temperature corresponding to this critical value of fluidity, there is sufficient mobility to reduce inhomogeneous line broadening that occurs at lower temperatures. A greater extent of fluidity leads to faster uniaxial rotational diffusion and a sigmoidal-type reduction in the NMR signal intensity, which stems from intermediate-exchange dynamics where the motion has a similar frequency as the NMR observables (i.e., dipolar couplings and chemical shift anisotropy). These experiments provide insight into the optimal temperature range and corresponding bilayer fluidity to study membrane proteins by solid-state NMR spectroscopy.


Journal of Biological Chemistry | 2015

A structured loop modulates coupling between the substrate-binding and dimerization domains in the multidrug resistance transporter EmrE.

James R. Banigan; Anindita Gayen; Min Kyu Cho; Nathaniel J. Traaseth

Background: EmrE is a multidrug transporter. Results: NMR spectroscopy was used to reveal a structured loop adjoining the substrate-binding and dimerization domains. Conclusion: The linker structure and composition are conserved across the small multidrug resistance family and necessary for ion-coupled transport. Significance: Loops in secondary active transporters can play an active role in efflux pump function and require characterization in lipid bilayers. Secondary active transporters undergo large conformational changes to facilitate the efflux of substrates across the lipid bilayer. Among the smallest known transport proteins are members of the small multidrug resistance (SMR) family that are composed of four transmembrane (TM) domains and assemble into dimers. An unanswered question in the SMR field is how the dimerization domain (TM4) is coupled with the substrate-binding chamber (TM1–3). To provide insight for this essential aspect of ion-coupled transport, we carried out a structure-function study on the SMR protein EmrE using solid-state NMR spectroscopy in lipid bilayers and resistance assays in Escherichia coli. The chemical shifts for EmrE were consistent with β-strand secondary structure for the loop connecting TM3 and TM4. Based on these structural results, EmrE mutants were created to ascertain whether a specific loop length and composition were necessary for function. A linker encompassing six extra Gly residues relative to wild-type EmrE failed to give resistance; however, the number of residues in the loop was not the only criterion for a functional efflux pump. Replacement of the central hydrophobic residue with Gly (L83G) also conferred no ethidium resistance phenotype, which supported the conclusion that the structure and length of the loop were both essential for ion-coupled transport. Taken together with a bioinformatics analysis, a structured linker is likely conserved across the SMR family to play an active role in mediating the conformational switch between inward-open and outward-open states necessary for drug efflux. These findings underscore the important role loops can play in mediating efflux.


Glycoconjugate Journal | 2014

Capability of ganglioside GM1 in modulating interactions, structure, location and dynamics of peptides/proteins: biophysical approaches Interaction of ganglioside GM1 with peptides/proteins

Ummul Liha Khatun; Anindita Gayen; Chaitali Mukhopadhyay

Gangliosides, are glycosphingolipids, present in all vertebrate plasma membranes with particular abundance in nerve cell membrane. Gangliosides can act as portals for antimicrobial peptides, hormones, viruses, lectins, toxins and pathogens. They are strategically positioned on the outer membrane and hence can participate in a large number of recognition processes. Their abundance in nerve cell membrane makes them “likely” receptor candidates for neuropeptides. In this review we outline our work in the area of GM1-peptide/protein interaction. We have explored the effect of GM1 containing micelles/bicelles on structures of peptides, proteins as well as on denatured proteins. It has been observed that the peptides that are disordered or having random coil structure in aqueous solution, attained an ordered three-dimensional structure when interact with GM1. It is also observed that denatured proteins undergo refolding in presence of ganglioside. Peptides/proteins show stronger interaction with membrane lipid bilayer in presence of ganglioside than that without ganglioside. This review mainly focuses on capability of ganglioside GM1 in modulating interaction, structural, location and dynamics of peptides/proteins using a number of biophysical techniques–solution NMR, DOSY, CD, fluorescence etc.


Biophysical Journal | 2016

Probing the Secondary Active Transport Mechanism of the Bacterial Efflux Pump EmrE

Maureen Leninger; Anindita Gayen; Nathaniel J. Traaseth


Archive | 2015

Dimerization Domains in the Multidrug between the Substrate-binding and A Structured Loop Modulates Coupling

James R. Banigan; Anindita Gayen


Angewandte Chemie | 2013

Back Cover: Ligand-Induced Conformational Changes of the Multidrug Resistance Transporter EmrE Probed by Oriented Solid-State NMR Spectroscopy (Angew. Chem. Int. Ed. 39/2013)

Anindita Gayen; James R. Banigan; Nathaniel J. Traaseth

Collaboration


Dive into the Anindita Gayen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge