Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaitali Mukhopadhyay is active.

Publication


Featured researches published by Chaitali Mukhopadhyay.


Biomacromolecules | 2008

GM1-induced structural changes of bovine serum albumin after chemical and thermal disruption of the secondary structure: a spectroscopic comparison.

Anindita Gayen; Chiradip Chatterjee; Chaitali Mukhopadhyay

GM1-induced structural transitions of native and unfolded conformers of bovine serum albumin (BSA) have been studied where in the unfolded conformers, the secondary structures were disrupted either chemically by 8 M urea or thermally by heating at 65 degrees C. With decreasing protein:ganglioside ratio at pH 7.0, the native BSA partially unfolds and expands, while the urea-denatured BSA forms an alpha-helical structural pattern with shrinking in the conformational space. However, a continuous loss of alpha-helicity with minor increase in size was observed for the thermally altered protein in the presence of the GM1 micelle. The changes in the secondary structural content were followed by far-UV circular dichroism (CD) analysis. The dynamic light scattering (DLS) experiments were used to study the variation of the size of the protein-GM1 complexes with increasing concentration of the GM1. Fluorescence experiments show that tryptophan residues of BSA experience a more hydrophobic environment in the presence of the GM1 micelle with a decreasing protein:ganglioside ratio at pH 7.0. The present study shows that GM1 has a strong effect on the conformation of BSA depending on the conformational states of the protein that would relate to a physiological function of GM1 such as acting as the receptor of proteins in the cell membrane.


Biochimica et Biophysica Acta | 2011

NMR evidence of GM1-induced conformational change of Substance P using isotropic bicelles

Anindita Gayen; Sudipto Kishore Goswami; Chaitali Mukhopadhyay

Substance P (SP) is one of the target neurotransmitters associated with diseases related to chronic inflammation, pain and depression. The selective receptor for SP, NK(1)R is located in the heterogeneous microdomains or caveolae in membrane. Gangliosides, specifically GM1, are markers of these heterogeneous sites. Also, gangliosides are considered as important regulatory elements in cell-cell recognition and cell signaling. In the present work, we describe the conformations of Substance P in the presence of ternary membrane systems containing GM1 at the physiological concentration. SP is mostly unstructured in water, but appears as extended 3(10) helical or turn III in isotropic bicelles, more pronounced in the presence of GM1. NMR results suggest that, in the GM1 containing bicelles, the peptide is more inserted into the membrane with its C-terminus, while N-terminus lies close to the membrane-water interface. The NMR-derived conformation of SP in GM1 bicelles is docked on homology modeled NK(1)R and resulting interactions satisfy reported mutagenesis, fluorescence, photo-affinity labeling and modeling data. The results highlight efficacy of GM1 in membrane in providing structure in an otherwise flexible neurotransmitter Substance P; thus providing indication that it may be useful also for other neurotransmitter peptides/proteins associated with membrane.


Journal of Physical Chemistry B | 2008

Atomistic Mechanism of Protein Denaturation by Urea

Atanu Kumar Das; Chaitali Mukhopadhyay

Effects of urea on protein stability have been studied from all-atom molecular dynamics simulations of ubiquitin, G311 protein, and immunoglobulin binding domain (B1) of streptococcal protein G (GB1) in water and 8 M aqueous urea solution. The mechanism of the change in the solvent environment and the early events in protein unfolding by urea have been identified with emphasis on the change in the interactions of hydrophilic and hydrophobic parts of the protein by calculating the potential of mean force (PMF). Urea replaces the protein-protein and protein-water contacts by forming stronger contacts with the protein, which is indicated by the longer survival times of the protein-urea hydrogen bonds.


PLOS ONE | 2013

Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation.

Moutusi Manna; Chaitali Mukhopadhyay

Interactions of amyloid-β (Aβ) with neuronal membrane are associated with the progression of Alzheimer’s disease (AD). Ganglioside GM1 has been shown to promote the structural conversion of Aβ and increase the rate of peptide aggregation; but the exact nature of interaction driving theses processes remains to be explored. In this work, we have carried out atomistic-scale computer simulations (totaling 2.65 µs) to investigate the behavior of Aβ monomer and dimers in GM1-containing raft-like membrane. The oligosaccharide head-group of GM1 was observed to act as scaffold for Aβ-binding through sugar-specific interactions. Starting from the initial helical peptide conformation, a β-hairpin motif was formed at the C-terminus of the GM1-bound Aβ-monomer; that didn’t appear in absence of GM1 (both in fluid POPC and liquid-ordered cholesterol/POPC bilayers and also in aqueous medium) within the simulation time span. For Aβ-dimers, the β-structure was further enhanced by peptide-peptide interactions, which might influence the propensity of Aβ to aggregate into higher-ordered structures. The salt-bridges and inter-peptide hydrogen bonds were found to account for dimer stability. We observed spontaneous formation of intra-peptide D23-K28 salt-bridge and a turn at V24GSN27 region - long been accepted as characteristic structural-motifs for amyloid self-assembly. Altogether, our results provide atomistic details of Aβ-GM1 and Aβ-Aβ interactions and demonstrate their importance in the early-stages of GM1-mediated Aβ-oligomerisation on membrane surface.


Langmuir | 2011

Molecular dynamics simulations of the interactions of kinin peptides with an anionic POPG bilayer.

Moutusi Manna; Chaitali Mukhopadhyay

We have performed molecular dynamics simulations of peptide hormone bradykinin (BK) and its fragment des-Arg9-BK in the presence of an anionic lipid bilayer, with an aim toward delineating the mechanism of action related to their bioactivity. Starting from the initial aqueous environment, both of the peptides are quickly adsorbed and stabilized on the cell surface. Whereas BK exhibits a stronger interaction with the membrane and prefers to stay on the interface, des-Arg9-BK, with the loss of C-terminal Arg, penetrates further. The heterogeneous lipid-water interface induces β-turn-like structure in the otherwise inherently flexible peptides. In the membrane-bound state, we observed C-terminal β-turn formation in BK, whereas for des-Arg9-BK, with the deletion of Arg9, turn formation occurred in the middle of the peptide. The basic Arg residues anchor the peptide to the bilayer by strong electrostatic interactions with charged lipid headgroups. Simulations with different starting orientations of the peptides with respect to the bilayer surface lead to the same observations, namely, the relative positioning of the peptides on the membrane surface, deeper penetration of the des-Arg9-BK, and the formation of turn structures. The lipid headgroups adjacent to the bound peptides become substantially tilted, causing bilayer thinning near the peptide contact region and increase the degree of disorder in nearby lipids. Again, because of hydrogen bonding with the peptide, the neighboring lipids polar heads exhibit considerably reduced flexibility. Corroborating findings from earlier experiments, our results provide important information about how the lipid environment promotes peptide orientation/conformation and how the peptide adapts to the environment.


Langmuir | 2008

Evidence for effect of GM1 on opioid peptide conformation: NMR study on leucine enkephalin in ganglioside-containing isotropic phospholipid bicelles.

Anindita Gayen; Chaitali Mukhopadhyay

Enkephalins are endogenous neuropeptides that have opioid-like activities and compete with morphines for the receptor binding. The binding of these neuropeptides to membrane appears crucial since enkephalins interact with the nerve cell membranes to achieve bioactive conformations that fit onto multiple receptor sites (micro, delta, and kappa). Using NMR spectroscopy, we have determined the solution structure of the small opiate pentapeptide leucine enkephalin in the presence of isotropic phospholipid bicelles: phosphocholine bicelles (DMPC:CHAPS 1:4) and phosphocholine bicelles doped with ganglioside GM1 (DMPC:CHAPS:GM1 1:4:0.3). Bicelles containing GM1 were found to interact strongly with leucine enkephalin, whereas a somewhat weaker interaction was observed in the case of bicelles without GM1. Structure calculation from torsion angles, chemical shifts, and NOE-based distance constraints explored that the peptide could flexibly switch between several mu- and delta-selective conformations in both the bicelles though micro-selective conformations turned out to be geometrically preferred in each bicellar system. A detailed analysis of the structures presented supports the variance over the singly associated conformation of enkephalin in nerve cell membranes.


Langmuir | 2008

Molecular Level Investigation of Organization in Ternary Lipid Bilayer: A Computational Approach

Sumita Mondal; Chaitali Mukhopadhyay

The differential organization of lipid components in a multicomponent membrane leads to formation of domains having diverse composition and size. Cholesterol and glycosphingolipids are known to be important components of such lateral assembly. We report here the ordering of cholesterol around ganglioside GM1 and the nature of the cluster from an all-atom simulation of a ternary lipid system. The results are compared with a binary bilayer and a pure phospholipid bilayer. The difference in molecular rearrangements in ternary and binary lipid mixture shows the role of GM1 in the rearrangement of cholesterol. Calculation of the radial distribution function, rotational reorientation, and residence time analysis of cholesterol shows that cholesterol is preferentially accumulating near gangliosides, while the lateral translational motion, rotational diffusion, and order parameter of phospholipids characterize the amount of rigidity imparted on the phospholipid bilayer.


Organic Letters | 2011

Simultaneous Parallel and Antiparallel Self-Assembly in a Triazole/Amide Macrocycle Conformationally Homologous to d-,l-α-Amino Acid Based Cyclic Peptides: NMR and Molecular Modeling Study

Abhijit Ghorai; Anindita Gayen; Goutam Kulsi; E. Padmanaban; Aparna Laskar; Basudeb Achari; Chaitali Mukhopadhyay; Partha Chattopadhyay

A 1,4-linked triazole/amide based peptidomimetic macrocycle, synthesized from a triazole amide oligomer of cis-furanoid sugar triazole amino acids, possesses a conformation resembling the D-,L-α-amino acid based cyclic peptides despite having uniform backbone chirality. It undergoes a unique mode of self-assembly through an antiparallel backbone to backbone intermolecular H-bonding involving amide NH and triazole N2/N3 as well as parallel stacking via amide NH and carbonyl oxygen H-bonding, leading to the formation of a tubular nanostructure.


Langmuir | 2014

Insights into Binding of Cholera Toxin to GM1 Containing Membrane

Ipsita Basu; Chaitali Mukhopadhyay

Interactions of cholera toxin (CT) with membrane are associated with the massive secretory diarrhea seen in Asiatic cholera. Ganglioside GM1 has been shown to be responsible for the binding of the B subunit of cholera toxin (CT-B), which then helps CT to pass through the membrane, but the exact mechanism remains to be explored. In this work, we have carried out atomistic scale molecular dynamics simulation to investigate the structural changes of CT upon membrane binding and alteration in membrane structure and dynamics. Starting from the initial structure where the five units of B subunit bind with five GM1, only three of five units remain bound and the whole CT is tilted such that the three binding units are deeper in the membrane. The lipids that are in contact with those units of the CT-B behave differently from the rest of the lipids. Altogether, our results demonstrate the atomistic interaction of CT with GM1 containing lipid membrane and provide a probable mechanism of the early stage alteration of lipid structure and dynamics, which can make a passage for penetration of CT on membrane surface.


Journal of Chemical Physics | 2007

Application of principal component analysis in protein unfolding: An all-atom molecular dynamics simulation study

Atanu Das; Chaitali Mukhopadhyay

We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

Collaboration


Dive into the Chaitali Mukhopadhyay's collaboration.

Top Co-Authors

Avatar

Abhijit Chakrabarti

Saha Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ipsita Basu

University of Calcutta

View shared research outputs
Top Co-Authors

Avatar

Malay Patra

University of Calcutta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atanu Das

University of Calcutta

View shared research outputs
Top Co-Authors

Avatar

Atanu Kumar Das

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge