Aniqa Shahid
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aniqa Shahid.
Trends in Microbiology | 2015
Jonathan M. Carlson; Anh Q. Le; Aniqa Shahid; Zabrina L. Brumme
HIV-1 develops specific mutations within its genome that allow it to escape detection by human leukocyte antigen (HLA) class I-restricted immune responses, notably those of CD8(+) cytotoxic T lymphocytes (CTL). HLA thus represents a major force driving the evolution and diversification of HIV-1 within individuals and at the population level. Importantly, the study of HIV-1 adaptation to HLA also represents an opportunity to identify what qualities constitute an effective immune response, how the virus in turn adapts to these pressures, and how we may harness this information to design HIV-1 vaccines that stimulate effective cellular immunity.
PLOS Genetics | 2014
Laura A. Cotton; Xiaomei T. Kuang; Anh Q. Le; Jonathan M. Carlson; Benjamin Chan; Denis R. Chopera; Chanson J. Brumme; Tristan Markle; Eric Martin; Aniqa Shahid; Gursev Anmole; Philip Mwimanzi; Pauline Nassab; Kali A. Penney; Manal Abdur Rahman; Mj Milloy; Martin T. Schechter; Martin Markowitz; Mary Carrington; Bruce D. Walker; Theresa Wagner; Susan Buchbinder; Jonathan D. Fuchs; Beryl A. Koblin; Kenneth H. Mayer; P. Richard Harrigan; Mark A. Brockman; Art F. Y. Poon; Zabrina L. Brumme
HLA-restricted immune escape mutations that persist following HIV transmission could gradually spread through the viral population, thereby compromising host antiviral immunity as the epidemic progresses. To assess the extent and phenotypic impact of this phenomenon in an immunogenetically diverse population, we genotypically and functionally compared linked HLA and HIV (Gag/Nef) sequences from 358 historic (1979–1989) and 382 modern (2000–2011) specimens from four key cities in the North American epidemic (New York, Boston, San Francisco, Vancouver). Inferred HIV phylogenies were star-like, with approximately two-fold greater mean pairwise distances in modern versus historic sequences. The reconstructed epidemic ancestral (founder) HIV sequence was essentially identical to the North American subtype B consensus. Consistent with gradual diversification of a “consensus-like” founder virus, the median “background” frequencies of individual HLA-associated polymorphisms in HIV (in individuals lacking the restricting HLA[s]) were ∼2-fold higher in modern versus historic HIV sequences, though these remained notably low overall (e.g. in Gag, medians were 3.7% in the 2000s versus 2.0% in the 1980s). HIV polymorphisms exhibiting the greatest relative spread were those restricted by protective HLAs. Despite these increases, when HIV sequences were analyzed as a whole, their total average burden of polymorphisms that were “pre-adapted” to the average host HLA profile was only ∼2% greater in modern versus historic eras. Furthermore, HLA-associated polymorphisms identified in historic HIV sequences were consistent with those detectable today, with none identified that could explain the few HIV codons where the inferred epidemic ancestor differed from the modern consensus. Results are therefore consistent with slow HIV adaptation to HLA, but at a rate unlikely to yield imminent negative implications for cellular immunity, at least in North America. Intriguingly, temporal changes in protein activity of patient-derived Nef (though not Gag) sequences were observed, suggesting functional implications of population-level HIV evolution on certain viral proteins.
Journal of Virology | 2014
Xiaomei T. Kuang; Xiaoguang Li; Gursev Anmole; Philip Mwimanzi; Aniqa Shahid; Anh Q. Le; Louise Chong; Hua Qian; Toshiyuki Miura; Tristan Markle; Bemuluyigza Baraki; Elizabeth Connick; Eric S. Daar; Heiko Jessen; Anthony D. Kelleher; Susan J. Little; Martin Markowitz; Florencia Pereyra; Eric S. Rosenberg; Bruce D. Walker; Takamasa Ueno; Zabrina L. Brumme; Mark A. Brockman
ABSTRACT Host and viral factors influence the HIV-1 infection course. Reduced Nef function has been observed in HIV-1 controllers during the chronic phase, but the kinetics and mechanisms of Nef attenuation in such individuals remain unclear. We examined plasma RNA-derived Nef clones from 10 recently infected individuals who subsequently suppressed viremia to less than 2,000 RNA copies/ml within 1 year postinfection (acute controllers) and 50 recently infected individuals who did not control viremia (acute progressors). Nef clones from acute controllers displayed a lesser ability to downregulate CD4 and HLA class I from the cell surface and a reduced ability to enhance virion infectivity compared to those from acute progressors (all P < 0.01). HLA class I downregulation activity correlated inversely with days postinfection (Spearmans R = −0.85, P = 0.004) and positively with baseline plasma viral load (Spearmans R = 0.81, P = 0.007) in acute controllers but not in acute progressors. Nef polymorphisms associated with functional changes over time were identified in follow-up samples from six controllers. For one such individual, mutational analyses indicated that four polymorphisms selected by HLA-A*31 and B*37 acted in combination to reduce Nef steady-state protein levels and HLA class I downregulation activity. Our results demonstrate that relative control of initial HIV-1 viremia is associated with Nef clones that display reduced function, which in turn may influence the course of HIV-1 infection. Transmission of impaired Nef sequences likely contributed in part to this observation; however, accumulation of HLA-associated polymorphisms in Nef that impair function also suggests that CD8+ T-cell pressures play a role in this phenomenon. IMPORTANCE Rare individuals can spontaneously control HIV-1 viremia in the absence of antiretroviral treatment. Understanding the host and viral factors that contribute to the controller phenotype may identify new strategies to design effective vaccines or therapeutics. The HIV-1 Nef protein enhances viral pathogenesis through multiple mechanisms. We examined the function of plasma HIV-1 RNA-derived Nef clones isolated from 10 recently infected individuals who subsequently controlled HIV viremia compared to the function of those from 50 individuals who failed to control viremia. Our results demonstrate that early Nef clones from HIV controllers displayed lower HLA class I and CD4 downregulation activity, as well as a reduced ability to enhance virion infectivity. The accumulation of HLA-associated polymorphisms in Nef during the first year postinfection was associated with impaired protein function in some controllers. This report highlights the potential for host immune responses to modulate HIV pathogenicity and disease outcome by targeting cytotoxic T lymphocyte (CTL) epitopes in Nef.
Clinical Cancer Research | 2016
Julie S. Nielsen; Colin G. Sedgwick; Aniqa Shahid; Zusheng Zong; Zabrina L. Brumme; Stephen Yu; Lewis Liu; David R. Kroeger; Steven P. Treon; Joseph M. Connors; Randy D. Gascoyne; Brian Berry; Marco A. Marra; Ryan D. Morin; Nicol Macpherson; Brad H. Nelson
Purpose: A fundamental challenge in the era of next-generation sequencing (NGS) is to design effective treatments tailored to the mutational profiles of tumors. Many newly discovered cancer mutations are difficult to target pharmacologically; however, T-cell–based therapies may provide a valuable alternative owing to the exquisite sensitivity and specificity of antigen recognition. To explore this concept, we assessed the immunogenicity of a panel of genes that are common sites of driver mutations in follicular lymphoma, an immunologically sensitive yet currently incurable disease. Experimental Design: Exon capture and NGS were used to interrogate tumor samples from 53 patients with follicular lymphoma for mutations in 10 frequently mutated genes. For 13 patients, predicted mutant peptides and proteins were evaluated for recognition by autologous peripheral blood T cells after in vitro priming. Results: Mutations were identified in 1–5 genes in 81% (43/53) of tumor samples. Autologous, mutation-specific CD8+ T cells were identified in 23% (3/13) of evaluated cases. T-cell responses were directed toward putative driver mutations in CREBBP and MEF2B. Responding T cells showed exquisite specificity for mutant versus wild-type proteins and recognized lymphoma cells expressing the appropriate mutations. Responding T cells appeared to be from the naïve repertoire, as they were found at low frequencies and only at single time points in each patient. Conclusions: Patients with follicular lymphoma harbor rare yet functionally competent CD8+ T cells specific for recurrent mutations. Our results support the concept of using NGS to design individualized immunotherapies targeting common driver mutations in follicular lymphoma and other malignancies. Clin Cancer Res; 22(9); 2226–36. ©2015 AACR.
Journal of Virology | 2015
Aniqa Shahid; Alex Olvera; Gursev Anmole; Xiaomei T. Kuang; Laura A. Cotton; Montserrat Plana; Christian Brander; Mark A. Brockman; Zabrina L. Brumme
ABSTRACT HLA-B*13 is associated with superior in vivo HIV-1 viremia control. Protection is thought to be mediated by sustained targeting of key cytotoxic T lymphocyte (CTL) epitopes and viral fitness costs of CTL escape in Gag although additional factors may contribute. We assessed the impact of 10 published B*13-associated polymorphisms in Gag, Pol, and Nef, in 23 biologically relevant combinations, on HIV-1 replication capacity and Nef-mediated reduction of cell surface CD4 and HLA class I expression. Mutations were engineered into HIV-1NL4.3, and replication capacity was measured using a green fluorescent protein (GFP) reporter T cell line. Nef-mediated CD4 and HLA-A*02 downregulation was assessed by flow cytometry, and T cell recognition of infected target cells was measured via coculture with an HIV-specific luciferase reporter cell line. When tested individually, only Gag-I147L and Gag-I437L incurred replicative costs (5% and 17%, respectively), consistent with prior reports. The Gag-I437L-mediated replication defect was rescued to wild-type levels by the adjacent K436R mutation. A novel B*13 epitope, comprising 8 residues and terminating at Gag147, was identified in p24Gag (GQMVHQAIGag140–147). No other single or combination Gag, Pol, or Nef mutant impaired viral replication. Single Nef mutations did not affect CD4 or HLA downregulation; however, the Nef double mutant E24Q-Q107R showed 40% impairment in HLA downregulation with no evidence of Nef stability defects. Moreover, target cells infected with HIV-1-NefE24Q-Q107R were recognized better by HIV-specific T cells than those infected with HIV-1NL4.3 or single Nef mutants. Our results indicate that CTL escape in Gag and Nef can be functionally costly and suggest that these effects may contribute to long-term HIV-1 control by HLA-B*13. IMPORTANCE Protective effects of HLA-B*13 on HIV-1 disease progression are mediated in part by fitness costs of CTL escape mutations in conserved Gag epitopes, but other mechanisms remain incompletely known. We extend our knowledge of the impact of B*13-driven escape on HIV-1 replication by identifying Gag-K436R as a compensatory mutation for the fitness-costly Gag-I437L. We also identify Gag-I147L, the most rapidly and commonly selected B*13-driven substitution in HIV-1, as a putative C-terminal anchor residue mutation in a novel B*13 epitope. Most notably, we identify a novel escape-driven fitness defect: B*13-driven substitutions E24Q and Q107R in Nef, when present together, substantially impair this proteins ability to downregulate HLA class I. This, in turn, increases the visibility of infected cells to HIV-specific T cells. Our results suggest that B*13-associated escape mutations impair HIV-1 replication by two distinct mechanisms, that is, by reducing Gag fitness and dampening Nef immune evasion function.
Journal of Virology | 2016
Philip Mwimanzi; Ian Tietjen; Scott C. Miller; Aniqa Shahid; Kyle Cobarrubias; Natalie N. Kinloch; Bemuluyigza Baraki; Jonathan Richard; Andrés Finzi; David Fedida; Zabrina L. Brumme; Mark A. Brockman
ABSTRACT The emergence of transmissible HIV-1 strains with resistance to antiretroviral drugs highlights a continual need for new therapies. Here we describe a novel acylguanidine-containing compound, 1-(2-(azepan-1-yl)nicotinoyl)guanidine (or SM111), that inhibits in vitro replication of HIV-1, including strains resistant to licensed protease, reverse transcriptase, and integrase inhibitors, without major cellular toxicity. At inhibitory concentrations, intracellular p24Gag production was unaffected, but virion release (measured as extracellular p24Gag) was reduced and virion infectivity was substantially impaired, suggesting that SM111 acts at a late stage of viral replication. SM111-mediated inhibition of HIV-1 was partially overcome by a Vpu I17R mutation alone or a Vpu W22* truncation in combination with Env N136Y. These mutations enhanced virion infectivity and Env expression on the surface of infected cells in the absence and presence of SM111 but also impaired Vpus ability to downregulate CD4 and BST2/tetherin. Taken together, our results support acylguanidines as a class of HIV-1 inhibitors with a distinct mechanism of action compared to that of licensed antiretrovirals. Further research on SM111 and similar compounds may help to elucidate knowledge gaps related to Vpus role in promoting viral egress and infectivity. IMPORTANCE New inhibitors of HIV-1 replication may be useful as therapeutics to counteract drug resistance and as reagents to perform more detailed studies of viral pathogenesis. SM111 is a small molecule that blocks the replication of wild-type and drug-resistant HIV-1 strains by impairing viral release and substantially reducing virion infectivity, most likely through its ability to prevent Env expression at the infected cell surface. Partial resistance to SM111 is mediated by mutations in Vpu and/or Env, suggesting that the compound affects host/viral protein interactions that are important during viral egress. Further characterization of SM111 and similar compounds may allow more detailed pharmacological studies of HIV-1 egress and provide opportunities to develop new treatments for HIV-1.
Journal of Immunological Methods | 2015
Gursev Anmole; Xiaomei T. Kuang; Mako Toyoda; Eric Martin; Aniqa Shahid; Anh Q. Le; Tristan Markle; Bemuluyigza Baraki; R. Brad Jones; Mario A. Ostrowski; Takamasa Ueno; Zabrina L. Brumme; Mark A. Brockman
HIV-1 evades cytotoxic T cell responses through Nef-mediated downregulation of HLA class I molecules from the infected cell surface. Methods to quantify the impact of Nef on T cell recognition typically employ patient-derived T cell clones; however, these assays are limited by the cost and effort required to isolate and maintain primary cell lines. The variable activity of different T cell clones and the limited number of cells generated by re-stimulation can also hinder assay reproducibility and scalability. Here, we describe a heterologous T cell receptor reporter assay and use it to study immune evasion by Nef. Induction of NFAT-driven luciferase following co-culture with peptide-pulsed or virus-infected target cells serves as a rapid, quantitative and antigen-specific measure of T cell recognition of its cognate peptide/HLA complex. We demonstrate that Nef-mediated downregulation of HLA on target cells correlates inversely with T cell receptor-dependent luminescent signal generated by effector cells. This method provides a robust, flexible and scalable platform that is suitable for studies to measure Nef function in the context of different viral peptide/HLA antigens, to assess the function of patient-derived Nef alleles, or to screen small molecule libraries to identify novel Nef inhibitors.
Archive | 2015
Aniqa Shahid; Zabrina L. Brumme
Adaptive, and possibly innate, host immune responses represent major selective forces driving the evolution of the human immunodeficiency virus 1 (HIV-1) group M “pandemic” strain. This immune-driven viral evolution occurs via the selection of escape mutations in the viral genome that allow HIV-1-infected cells to evade detection by cellular immune responses and/or that allow individual virions to escape neutralization by host antibodies. The first part of this chapter provides an overview of past and recent advances in our understanding of HIV-1 mutational immune escape (and the associated process of reversion) as highly specific and reproducible processes both within and between hosts. HIV-1 escape from adaptive cellular immune responses are covered in detail, but escape from neutralizing antibodies and Natural Killer (NK) cells is also discussed. In particular, we highlight recent advances in our understanding of early escape dynamics, molecular mechanisms, and the consequences of escape for viral fitness and diversity. We also describe insights recently gained from statistical association studies of immune-driven polymorphisms in HIV-1. The second part of the chapter outlines the potential biological and clinical implications of immune escape for the pandemic’s future, including the evidence supporting gradual HIV-1 evolution towards increasing “resistance” to host immunity via the spread of immune escape mutations in circulating HIV-1 sequences. Finally, we discuss the evidence supporting vaccine-induced immune responses as potential drivers of rapid within-host viral adaptation, and its potential implications for the transmission, selection and evolution of HIV-1 as the epidemic progresses.
The Journal of Infectious Diseases | 2018
Wendy Zhang; Peter K. Cheung; Natalia Oliveira; Marjorie Robbins; P. Richard Harrigan; Aniqa Shahid
Bictegravir (BIC) and cabotegravir (CAB) are the latest available HIV integrase inhibitors in clinical trials. The combination of major integrase inhibitor substitutions G140S/Q148H has been shown to confer high-level resistance to the approved integrase inhibitors raltegravir (RAL) and elvitegravir (EVG) but not necessarily dolutegravir (DTG). We assayed recombinant viruses made from patient-derived RNA extracts for resistance phenotype for a panel of viruses containing G140S/Q148H with additional accessory substitutions. The accumulation of multiple integrase substitutions confers high-level resistance to all 5 integrase inhibitors. There is extensive cross-resistance between DTG, BIC, and CAB (r = 0.96-0.97).
Journal of Immunological Methods | 2013
Aniqa Shahid; Denis R. Chopera; Eric Martin; Kali A. Penney; M.-J. Milloy; Zabrina L. Brumme
We describe a reliable and semi-automated method for killer-cell immunoglobulin-like receptor (KIR) 3DL1/S1 genotyping using DNA recovered from frozen plasma. The primers and protocol were first validated using two independent genomic DNA reference panels. To confirm the approach using plasma-derived DNA, total nucleic acids were extracted from 69 paired frozen PBMC and plasma specimens representing all common KIR3DL1/S1 genotypes (3DS1/3DS1, 3DS1/3DL1 and 3DL1/3DL1, including rare allele 3DL1*054), and analyzed in a blinded fashion. The method involves independent nested PCR amplification of KIR3DL1/S1 Exon 4, and if required Exon 3, using universal sequence-specific primers, followed by bidirectional sequencing. The free basecalling software RECall is recommended for rapid, semi-automated chromatogram analysis. KIR3DL1/S1 type assignment is based on two key nucleotide polymorphisms in Exon 4 and, if required, up to two additional polymorphisms in exon 3. Assignment can be performed manually or using our web-based algorithm, KIR3D. Extractions from plasma yielded median [IQR] nucleic acid concentrations of 0.9 [below the limit of detection-2.45] ng/μl. PCR was successful for 100% of exon 4 (69/69) and exon 3 (29/29) plasma amplifications. Chromatogram quality was high and concordance between PBMC and plasma-derived types was 100%. The estimated lower limit of input DNA required for reliable typing is 0.01 ng/μl. This method provides reliable and accurate KIR3DL1/S1 typing when conventional sources of high-quality genomic DNA are unavailable or limiting.