Anirban Panda
Texas A&M University at Galveston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anirban Panda.
Journal of Physical Chemistry A | 2009
Iqbal A. Latif; Anirban Panda; Sambhu N. Datta
We predict extremely large and positive intramolecular magnetic exchange coupling constants (J) for coupled diradicals constructed from nitronyl nitroxide (NN) and oxoverdazyl (o-VER). These radicals have the general formula o-VER(N)-nC-NN where nC represents an olefinic spacer with n = 0, 2, 4, 6, and 8. Species like o-VER(C)-nC-NN have negative coupling constants. The atoms in the parentheses show the point of attachment of the coupler to the verdazyl moiety. Both the N-linked series and C-linked series have comparable stability. The triplet molecular geometries were optimized by the density functional (UB3LYP) method using the 6-311 g(d,p) basis set. This was followed by single-point UB3LYP calculations using 6-311++g(3df,3pd) basis. To calculate J, single-point broken-symmetry computations were performed on the optimized triplet geometries and using the same basis set. The N-linked diradicals coupled through conjugated polyenes are topologically different. These are found to have coupling constants of the order of 1000 cm(-1), whereas the C-linked diradicals show coupling constants of the order of -100 cm(-1). In general, for both cases, the absolute magnitude of the coupling constant decreases with the increase in the length of the spacer.
Journal of Physical Chemistry A | 2010
Suranjan Shil; Anirban Panda; Anirban Misra
We have theoretically designed five different m-phenylene coupled high-spin bis-heteroverdazyl diradicals and their analogous p-phenylene coupled low-spin positional isomers. The geometry-based aromaticity index, harmonic oscillator model of aromaticity (HOMA) values for both the couplers (local HOMA), and the whole diradicals (global HOMA) have been calculated for all the diradicals. We also qualitatively relate these HOMA values with the intramolecular magnetic exchange coupling constants (J), calculated using a broken symmetry approach within unrestricted density functional theory framework. Structural aromaticity index HOMA of linkage specific benzene rings in our designed diradical systems shows that the aromatic character depends on the planarity of the molecule and it controls the sign and magnitude of J. The predicted J values are explained on the basis of spin polarization maps, average dihedral angles, and magnetic orbitals. The effect of the spin leakage phenomenon on magnetic exchange coupling constant and that on HOMA values of certain phosphaverdazyl systems has been explicitly discussed. In addition, a similar comparison is made between the calculated exchange coupling constants and corresponding HOMA values. The main novelty of this work stands on the consideration of the aromatic behavior by means of the geometrical index HOMA. We also estimate another aromaticity index, nucleus independent chemical shift (NICS) values for the phenylene coupler in each diradical to measure aromaticity and compare its value with that of HOMA. The ground state stabilities of these diradicals have also been compared.
Journal of Physical Chemistry A | 2010
Iqbal A. Latif; Ved Prakash Singh; Ujjal Bhattacharjee; Anirban Panda; Sambhu N. Datta
We predict large and positive intramolecular magnetic exchange coupling constants (J) for coupled diradicals constructed from nitronyl nitroxide and tetrathiafulvalene monoradical moieties. These diradicals have the general formula TTF-coupler-NN, where the couplers are mostly aromatic systems. Unrestricted density functional methodology (UB3LYP) has been used to optimize the molecular geometries of the triplet diradicals using the 6-311 g(d,p) basis set. This has been followed by single-point UB3LYP calculations for triplet and broken symmetry (BS) states using 6-311++g(3df,3pd) basis and the optimized triplet geometries. We find that the species comprising of ethylene (geminal coupling) and pyridine as couplers have singlet ground states whereas the other species have triplet ground states. These findings are in support of the spin alternation rule. The largest J value we predict is 648.6 cm(-1) for the molecule with the spacer pyrrole. We also determine the percent weightings of triplet and singlet components in the BS state, estimate the diradical nature, and calculate the relative weights of different singlet and triplet component functions in the BS solution in each case.
Journal of Organic Chemistry | 2016
Prodipta Sarbadhikary; Suranjan Shil; Anirban Panda; Anirban Misra
A total of nine diradical-based organic chiral magnetic molecules with allene and cumulene couplers have been theoretically designed, and subsequently, their magnetic property has been studied by density functional theory. It is found that with an increase in length of the coupler, a remarkable increase in spin density within the coupler takes place. An increase in the length of the coupler reduces the energy of LUMO, and a smaller HOMO-LUMO gap facilitates stronger magnetic coupling and thereby a higher magnetic exchange coupling constant (J). This observation is supported by the occupation number of natural orbitals.
Journal of Physical Chemistry A | 2010
Ujjal Bhattacharjee; Anirban Panda; Iqbal A. Latif; Sambhu N. Datta
Three sets of heterosubstituted, interconvertible, cyclophanediene (CPD), and dihydropyrenes (DDPs) and one such set involving dinitrilepyrenes were examined by UB3LYP broken-symmetry methodology with 6-311++g(d,p) bases. Nitronyl nitroxide and oxoverdazyl (with both N and C terminals) are monoradical centers, whereas CPD and DDP moieties serve as couplers. The photoexcited CPD converts to DDP. The calculated exchange coupling constant (J) for o-VER(N)-DDP-NN is surprisingly high, 6412 cm(-1), and much larger than 28.9 cm(-1) for the CPD species, but the unsubstituted DDP is known to transform readily into pyrene, with the loss of reversibility. Nevertheless, o-VER(N)-(15,16-dinitrile)DDP-NN also has a large J value, 589.4 cm(-1). The corresponding CPD species has J = 53.3 cm(-1). We predict that the latter CPD and DDP diradicals are potential molecules to synthesize photomagnetic materials. The o-VER(N)-DDP-NN can also be an excellent photomagnetic switch at a considerably low temperature.
Computational and Theoretical Chemistry | 2013
Suranjan Shil; Tamal Goswami; Anirban Misra; Anirban Panda; Douglas J. Klein
Journal of Physical Chemistry A | 2014
Anirban Panda; Anirban Misra; Douglas J. Klein
Physical Chemistry Chemical Physics | 2012
Anirban Panda; Suranjan Shil; Tamal Goswami; Anirban Misra
Croatica Chemica Acta | 2013
Anirban Panda
Journal of Physical Organic Chemistry | 2013
Anirban Panda; Subramaniam Vijayakumar; Douglas J. Klein; Anton Ryzhov