Iqbal A. Latif
Indian Institute of Technology Bombay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iqbal A. Latif.
Journal of Physical Chemistry A | 2009
Iqbal A. Latif; Anirban Panda; Sambhu N. Datta
We predict extremely large and positive intramolecular magnetic exchange coupling constants (J) for coupled diradicals constructed from nitronyl nitroxide (NN) and oxoverdazyl (o-VER). These radicals have the general formula o-VER(N)-nC-NN where nC represents an olefinic spacer with n = 0, 2, 4, 6, and 8. Species like o-VER(C)-nC-NN have negative coupling constants. The atoms in the parentheses show the point of attachment of the coupler to the verdazyl moiety. Both the N-linked series and C-linked series have comparable stability. The triplet molecular geometries were optimized by the density functional (UB3LYP) method using the 6-311 g(d,p) basis set. This was followed by single-point UB3LYP calculations using 6-311++g(3df,3pd) basis. To calculate J, single-point broken-symmetry computations were performed on the optimized triplet geometries and using the same basis set. The N-linked diradicals coupled through conjugated polyenes are topologically different. These are found to have coupling constants of the order of 1000 cm(-1), whereas the C-linked diradicals show coupling constants of the order of -100 cm(-1). In general, for both cases, the absolute magnitude of the coupling constant decreases with the increase in the length of the spacer.
Journal of Physical Chemistry A | 2011
Arjun Saha; Iqbal A. Latif; Sambhu N. Datta
We have theoretically designed efficient photomagnetic diradicals using both substituted and unsubstituted cyclophanediene (CPD) and dihydropyrenes (DHP) as spacers. Nitronyl nitroxide (NN), oxoverdazyl (o-VER), and tetrathiafulvalene (TTF) are chosen as monoradical centers. Molecular geometries have been optimized by the density functional method UB3LYP using the 6-311G(d,p) basis set. Final single point calculations have been done with the 6-311++G(d,p) basis. Absorption wavelengths have been estimated from time-dependent density functional treatment using restricted spin-polarized density functionals (RB3LYP) and 6-31G basis. Both the substituted and unsubstituted CPD species with mixed monoradical centers are found to be antiferromagnetically coupled. Diradicals with the same centers but with DHP coupler exhibit strong ferromagnetic coupling. Also, photoexcitations of the diradicals are generally red-shifted by only a few nanometers from those of the 15,16-dimethyl pyrenes. This indicates that on photoexcitation a consistent magnetic crossover from an antiferromagnetic to a ferromagnetic regime is possible. The accompanying change in magnetic exchange coupling constant ΔJ is very large, varying from 445 to 1003 cm(-1). As far as organic molecular magnetism is concerned, this observation is entirely new and likely to be of technological significance.
Journal of Physical Chemistry A | 2012
Sambhu N. Datta; Arun Pal; Shekhar Hansda; Iqbal A. Latif
The cis- and trans-azobenzenes are known as photochromic isomers with the trans- converting into the cis-form and vice versa upon irradiation with specific wavelengths. We have quantum chemically investigated the cis- and trans-forms of substituted azobenzene diradicals, with two nitronyl nitroxides, imino nitoxides, or verdazyls at para positions and serving as monoradical centers, to determine whether they can exhibit a photoassisted magnetic crossover. Geometries of both substituted and unsubstituted molecules have been optimized by density functional (DF) method UB3LYP using the 6-311G(d,p) basis set. Optimization of the geometry of the cis isomers has required special care. Single point singlet, triplet, and broken symmetry calculations have been done using 6-311++G(3df, 3pd) basis set. The magnetic exchange coupling constants have been estimated from the broken symmetry calculations. Absorption wavelengths have been estimated for both substituted and unsubstituted species from time-dependent DF treatment using restricted spin-polarized methodology RB3LYP and 6-311++G(3df, 3pd) basis set. From the similarity in the calculated absorption wavelengths for the unsubstituted and substituted azobenzenes, and the increased oscillator strengths (f) for the substituted species, we predict that the diradical isomers would be strongly photochromic. From our triplet state and broken symmetry calculations, we predict that both the cis- and the trans-diradicals are antiferromagnetically coupled. This prediction is consistent with the spin alternation rule, and the possibility of a magnetic crossover is nonexistent for these species.
Journal of Physical Chemistry A | 2010
Iqbal A. Latif; Ved Prakash Singh; Ujjal Bhattacharjee; Anirban Panda; Sambhu N. Datta
We predict large and positive intramolecular magnetic exchange coupling constants (J) for coupled diradicals constructed from nitronyl nitroxide and tetrathiafulvalene monoradical moieties. These diradicals have the general formula TTF-coupler-NN, where the couplers are mostly aromatic systems. Unrestricted density functional methodology (UB3LYP) has been used to optimize the molecular geometries of the triplet diradicals using the 6-311 g(d,p) basis set. This has been followed by single-point UB3LYP calculations for triplet and broken symmetry (BS) states using 6-311++g(3df,3pd) basis and the optimized triplet geometries. We find that the species comprising of ethylene (geminal coupling) and pyridine as couplers have singlet ground states whereas the other species have triplet ground states. These findings are in support of the spin alternation rule. The largest J value we predict is 648.6 cm(-1) for the molecule with the spacer pyrrole. We also determine the percent weightings of triplet and singlet components in the BS state, estimate the diradical nature, and calculate the relative weights of different singlet and triplet component functions in the BS solution in each case.
Theoretical Chemistry Accounts | 2014
Arun K. Pal; Daniel Reta Mañeru; Iqbal A. Latif; Ibério de P. R. Moreira; Francesc Illas; Sambhu N. Datta
We predict the magnetic exchange coupling constant (J) for 27 m-phenylene-based nitronyl nitroxide (NN) diradicals with nine different substituents in three unique (common ortho, ortho–meta and common meta) positions on the coupler unit by using the broken-symmetry density functional methodology. For all investigated diradicals, J values are computed using B3LYP, B3LYP-D3 and M06-2X functionals with 6–311+G(d,p) basis set. The JM06-2X value is larger than JB3LYP and closer to the observed value for the unsubstituted species. Substitutions at common ortho position always produce a greater angle of twist between the spin source and the coupler units. When the twist angle is very large, the nature of intramolecular magnetic interaction changes from ferromagnetic to antiferromagnetic. In these cases, the coupler–NN bond order becomes small. Substitution at the common meta position of m-phenylene in the diradical has little steric and hydrogen-bonding effects. Electron-withdrawing groups reveal a specific trend for single-atom substitution. An ortho substitution generally decreases J and a meta substitution always increases J with a decreasing −I effect. Variation of J with planarity as well as Hammett constant is investigated. The nucleus-independent chemical shift value is found to decrease from the corresponding mono-substituted phenyl derivatives. The dependence of J on these factors is explored.
Journal of Physical Chemistry A | 2012
Iqbal A. Latif; Shekhar Hansda; Sambhu N. Datta
The Schlenk diradical has been known since 1915. After a detailed experimental work by Rajca, its magnetic nature has remained more or less unexplored. We have investigated by quantum chemical calculations the nature of magnetic coupling in 11 substituted Schlenk diradicals. Substitution has been considered at the fifth carbon atom of the meta-phenylene moiety. The UB3LYP method has been used to study 12 diradicals including the original one. The 6-311G(d,p) basis set has been employed for optimization of molecular geometry in both singlet and triplet states for each species. The singlet optimization has led to the optimization of the broken-symmetry structure for 10 species including the unsubstituted one. This development makes it possible to carry out further broken symmetry calculations in two ways. The triplet calculation has been done using 6-311++G(d,p) basis set and the optimized triplet geometry in both procedures. The broken symmetry calculations have used the optimized geometries of either the triplet states or the broken symmetry solutions. The first method leads to the prediction of electron paramagnetic resonance (EPR) compatible magnetic exchange coupling constant (J) in the range 517-617 cm(-1). A direct optimization of the broken symmetry geometry gives rise to a lower estimate of J, in the range of 411-525 cm(-1) and compatible with macroscopic Curie studies. The calculated J for the unsubstituted Schlenk diradical is 512 cm(-1) that can be compared with 455 cm(-1) estimated by Rajca. In both cases, introduction of groups with +M and +I effects (Ingolds notation) decreases the J value from that for the unsubstituted Schlenk diradical while -I and -M groups at the same position increases J. These trends have been explained in terms of Hammett constants, atomic spin densities, and dihedral angles.
Journal of Physical Chemistry A | 2013
Tumpa Sadhukhan; Shekhar Hansda; Arun Pal; Gurram V. Venkatakrishna; Iqbal A. Latif; Sambhu N. Datta
We have investigated the ground state spin of 10 pairs of possible photochromic diradical isomers by quantum chemical methods. Dihydrogen pyrenes and dinitrile pyrenes have been chosen as spacers with radical centers attached at (1,7) and (1,8) locations. Oxoverdazyl has served as a radical center, and both C and N linkages have been investigated. Triplet molecular geometries have been optimized at the UB3LYP/6-311G(d,p) level. Single-point calculations on triplet and broken symmetry states have been performed using the 6-311++G(d,p) basis set. Careful designs have led to the prediction of strongly coupled dihydropyrene (DHP) isomers, and the cyclophenadiene (CPD) isomers have always been found as weakly coupled. The effect of the functional M06-2X has been investigated. Calculated TDDFT spectra have been sufficient to guarantee photochromism of the designed diradicals. It has been estimated that compounds of diradicals with large coupling constants in the DHP form would show a pronounced change in molar susceptibility on photoconversion. This has led us to identify two molecules that can serve as a photomagnetic switch at room temperature.
Journal of Physical Chemistry A | 2010
Ujjal Bhattacharjee; Anirban Panda; Iqbal A. Latif; Sambhu N. Datta
Three sets of heterosubstituted, interconvertible, cyclophanediene (CPD), and dihydropyrenes (DDPs) and one such set involving dinitrilepyrenes were examined by UB3LYP broken-symmetry methodology with 6-311++g(d,p) bases. Nitronyl nitroxide and oxoverdazyl (with both N and C terminals) are monoradical centers, whereas CPD and DDP moieties serve as couplers. The photoexcited CPD converts to DDP. The calculated exchange coupling constant (J) for o-VER(N)-DDP-NN is surprisingly high, 6412 cm(-1), and much larger than 28.9 cm(-1) for the CPD species, but the unsubstituted DDP is known to transform readily into pyrene, with the loss of reversibility. Nevertheless, o-VER(N)-(15,16-dinitrile)DDP-NN also has a large J value, 589.4 cm(-1). The corresponding CPD species has J = 53.3 cm(-1). We predict that the latter CPD and DDP diradicals are potential molecules to synthesize photomagnetic materials. The o-VER(N)-DDP-NN can also be an excellent photomagnetic switch at a considerably low temperature.
Journal of Physical Chemistry B | 2014
Tumpa Sadhukhan; Iqbal A. Latif; Sambhu N. Datta
An understanding of the temperature-dependence of solubility of carbon dioxide (CO2) in water is important for many industrial processes. Voluminous work has been done by both quantum chemical methods and molecular dynamics (MD) simulations on the interaction between CO2 and water, but a quantitative evaluation of solubility remains elusive. In this work, we have approached the problem by considering quantum chemically calculated total energies and thermal energies, and incorporating the effects of mixing, hydrogen bonding, and phonon modes. An overall equation relating the calculated free energy and entropy of mixing with the gas-solution equilibrium constant has been derived. This equation has been iteratively solved to obtain the solubility as functions of temperature and dielectric constant. The calculated solubility versus temperature plot excellently matches the observed plot. Solubility has been shown to increase with dielectric constant, for example, by addition of electrolytes. We have also found that at the experimentally reported concentration of enzyme RuBP in bundle sheath cells of chloroplast in C4 green plants, the concentration of CO2 can effectively increase by as much as a factor of 7.1-38.5. This stands in agreement with the observed effective rise in concentration by as much as 10 times.
Journal of Chemical Sciences | 2015
Dibyendu Mondal; Tumpa Sadhukhan; Iqbal A. Latif; Sambhu N. Datta
AbstractThis work aims to verify the experimental thermochemistry of the reactions involved in Calvin cycle that produces glucose equivalent by using products from the light-activated reactions in chloroplast. The molecular geometry of each involved species in water has been optimized by density functional theory using SCRF-PCM methodology at M06-2X/6-311 ++G(3df,3pd) level. The thermal correction to Gibbs free energy of each solute has been calculated at the same level of theory. An explicit accounting of the intramolecular and intermolecular hydrogen bonding has been made for each solute molecule by using theoretically determined values from different sources. These data have been added together to obtain the standard Gibbs free energy GØ for each molecule in solution. Finally, the free energy change ΔG of each involved reaction has been determined using the experimental concentrations under physiological conditions. The calculated ΔG values are generally in good agreement with the experimentally found free energy changes, with only a few relatively large deviations. Five regulating steps with moderately large and negative ΔG have been identified, whereas only three of them were clearly identified from experiment. We particularly show that the steps involving the formation of G3P from 3-PG and the regeneration of RuBP from Ru5P are thermodynamically strongly favored, and therefore, they take part in driving the metabolic process. We have illustrated Calvin cycle by vividly distinguishing the controlling steps from the potentially reversible reactions. Graphical AbstractThe controlling steps in Calvin cycle are theoretically found. Not only carbon dioxide assimilation but also the formation of G3P is thermodynamically favored. This helps in a steady plant growth. G3P partly converts into Ru5P. The conversion of Ru5P into RuBP is also favorable, which completes the full cycle.