Aniruddha Adhikari
Indian Association for the Cultivation of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aniruddha Adhikari.
Journal of Chemical Physics | 2015
Satoshi Nihonyanagi; Ryoji Kusaka; Kenichi Inoue; Aniruddha Adhikari; Shoichi Yamaguchi; Tahei Tahara
Discussion on the structure of the water surface relies on accurate determination of the χ(2) spectrum. For obtaining accurate χ(2) spectrum of the air/water interface in the OH stretch region, we performed heterodyne-detected vibrational sum-frequency generation measurements with a high phase accuracy, and also examined the validity of the phase and amplitude calibration using different non-resonant materials. In contrast to the previous reports, it was concluded that the imaginary part of the χ(2) spectrum of the air/water interface does not exhibit noticeable positive resonance in the low frequency region within the experimental error. This result urges us to reconsider the structure of the air/water interface based on the accurate χ(2) spectrum.
Journal of Physical Chemistry A | 2009
Aniruddha Adhikari; Dibyendu Das; Dibyendu Kumar Sasmal; Kankan Bhattacharyya
Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G) is studied in a room temperature ionic liquid (RTIL) microemulsion by picosecond and femtosecond emission spectroscopy. The microemulsion is comprised of the RTIL 1-pentyl-3-methylimidazolium tetraflouroborate, [pmim][BF4], in TX-100/ benzene. We have studied the microemulsion with and without water. The time constants of FRET were obtained from the risetime of the acceptor (R6G) emission. In the RTIL microemulsion, FRET occurs on multiple time scales: 1, 250, and 3900 ps. In water containing RTIL microemulsion, the rise components are 1.5, 250, and 3900 ps. The 1 and 1.5 ps components are assigned to FRET at a close contact of donor and acceptor (RDA approximately 12 A). This occurs within the highly polar (RTIL/water) pool of the microemulsion. With increase in the excitation wavelength (lambdaex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET (1 ps) increases from 4% to 100% in the RTIL microemulsion and 12% to 100% in the water containing RTIL microemulsion. It is suggested that at lambdaex = 435 nm, mainly the highly polar RTIL pool is probed where FRET is very fast due to the close proximity of the donor and the acceptor. The very long 3900 ps (RDA approximately 45 A) component may arise from FRET from a donor in the outer periphery of the microemulsion to an acceptor in the polar RTIL pool. The 250 ps component (RDA approximately 29 A) is assigned to FRET from a donor inside the surfactant chains.
Chemistry-an Asian Journal | 2009
Subhadip Ghosh; Ujjwal Mandal; Aniruddha Adhikari; Kankan Bhattacharyya
Fluorescence correlation spectroscopy (FCS) has been used to study translational diffusion of three fluorescent dyes in a micelle and a gel. It was demonstrated that a highly hydrophobic dye, DCM, remains confined to a particular micelle during the passage of the micellar aggregation through the confocal volume. As a result, DCM exhibits slow diffusion of the large micellar aggregate with a diffusion coefficient (D(t)) approximately 25 times slower compared with that of water. In contrast, a hydrophilic probe (C343 or C480) occasionally diffuses out of the micelle into bulk water and displays a large D(t) (twofold smaller in F127 and approximately six times smaller in the P123 micelle compared with that in bulk water). In a gel, diffusion of the individual micelles is completely arrested and hence, the autocorrelation in FCS arises solely from the diffusion of the dye in the gel. In this case, all the three dyes exhibit extremely slow diffusion (300, 45, and 20 times slower than that in water for DCM, C480, and C343 in F127 gel, respectively). In a P123 and F127 gel, diffusion of DCM is respectively, seven and 29 times slower compared with that of the ionic probe C343. The relatively small value of red-edge excitation shift (REES) of the emission maximum, suggests that DCM is confined within the core of the triblock copolymer micelles and gels. The hydrophilic probes (C343 or C480) exhibit fast diffusion in the micelles and gels. However, their REES is very different. The large REES of C480 suggests that it is distributed over a large region of the micelle, whereas the low REES of C343 indicates that it is located primarily in the peripheral corona region.
Journal of Physical Chemistry B | 2009
Shantanu Dey; Aniruddha Adhikari; Dibyendu Das; Dibyendu Kumar Sasmal; Kankan Bhattacharyya
Dynamic light scattering studies indicate that addition of a room temperature ionic liquid (RTIL, [pmim][Br]), to a triblock copolymer (P123) micelle leads to the formation of giant P123-RTIL clusters of size (diameter) 40 nm in 0.9 M and 3500 nm (3.5 microm) in 3 M RTIL. They are much larger than a P123 micelle ( approximately 18 nm) or [pmim][Br] (1.3 nm). Dynamics in different regions of the P123-RTIL aggregate is probed by variation of the excitation wavelength (lambda(ex)) using femtosecond up-conversion. For lambda(ex) = 375 nm, the nonpolar core of the P123-RTIL aggregate is preferentially excited while lambda(ex) = 435 nm selects the polar corona region. Solvation dynamics and anisotropy decay of coumarin 480 (C480) in a P123-RTIL giant aggregate are markedly different from those in either P123 micelle or those in an aqueous solution of the RTIL. For lambda(ex) = 405 nm in 5 wt % P123 and 0.9 M RTIL average rotational time, ( = 1350 ps) of C480 is approximately 7 times longer than that (200 ps) in an aqueous solution of the RTIL in the absence of P123 and is shorter than that (3000 ps) in a P123 micelle. In 0.9 M RTIL and 5 wt % P123, solvation dynamics in the corona region (lambda(ex) = 435 nm, = 75 ps) is approximately 25 times faster than that at the core region (at lambda(ex) = 375 nm, = 1900 ps). The solvation dynamics in the core of the P123-RTIL aggregate is faster than that in P123 micelle (3550 ps in the core) and is much slower than that (130 ps) in an aqueous solution containing 0.9 M RTIL. In the 3.5 microm sized aggregate (3 M RTIL and P123), the solvation dynamics in the core ( = 500 ps) is approximately 4 times faster than that in 0.9 M RTIL.
Journal of Physical Chemistry B | 2010
Dibyendu Kumar Sasmal; Supratik Sen Mojumdar; Aniruddha Adhikari; Kankan Bhattacharyya
The deuterium isotope effect on the solvation dynamics and the anisotropy decay of coumarin 480 (C480) in a room temperature ionic liquid (RTIL) microemulsion is studied by femtosecond up-conversion. The microemulsion consists of the RTIL 1-pentyl-3-methyl-imidazolium tetra-fluoroborate ([pmim][BF(4)]) in triton X-100 (TX-100)/benzene. Replacement of H(2)O by D(2)O in the microemulsion causes retardation of solvation dynamics. The average solvation time of C480 (tau(s)) in RTIL microemulsion with 5 wt % D(2)O is approximately 1.5-1.7 times slower compared to that in the H(2)O containing RTIL microemulsion. This suggests that the main species in the microemulsion responsible for solvation is the water molecules. In both D(2)O and H(2)O containing RTIL microemulsion, the solvation dynamics exhibits marked dependence on the excitation wavelength (lambda(ex)) and becomes about 15 times faster as lambda(ex) increases from 375 to 435 nm. This is ascribed to the structural heterogeneity in the RTIL microemulsion. For lambda(ex) = 375 nm, the region near the TX-100 surfactant is probed where bound water molecules cause slow solvation dynamics. At 435 nm, the RTIL pool is selected where the water molecules are more mobile and hence gives rise to faster solvation. The average time constant of anisotropy decay shows opposite dependence on lambda(ex) and increases about 2.5-fold from 180 ps at lambda(ex) = 375 nm to 500 ps at lambda(ex) = 435 nm for D(2)O containing RTIL microemulsion. The slower anisotropy decay at lambda(ex) = 435 nm is ascribed to the higher viscosity of RTIL which causes greater friction at the core.
Journal of Physical Chemistry B | 2010
Subhadip Ghosh; Aniruddha Adhikari; Supratik Sen Mojumdar; Kankan Bhattacharyya
The mobility of the organic dye DCM (4-dicyanomethylene-2-methyl-6-p-dimethyl aminostyryl-4H-pyran) in the gel and fluid phases of a lipid vesicle is studied by fluorescence correlation spectroscopy (FCS). Using FCS, translational diffusion of DCM is determined in the gel phase and fluid phase of a single lipid vesicle adhered to a glass surface. The size of a lipid vesicle (average diameter approximately 100 nm) is smaller than the diffraction limited spot size (approximately 250 nm) of the microscope. Thus, the vesicle is confined within the laser focus. Three lipid vesicles (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)) having different gel transition temperatures (-1, 23, and 41 degrees C, respectively) were studied. The diffusion coefficient of the dye DCM in bulk water is approximately 300 microm(2)/s. In the lipid vesicle, the average D(t) decreases markedly to approximately 5 microm(2)/s (approximately 60 times) in the gel phase (for DPPC at 20 degrees C) and 40 microm(2)/s ( approximately 8 times) in the fluid phase (for DLPC at 20 degrees C). This clearly demonstrates higher mobility in the fluid phase compared with the gel phase of a lipid. It is observed that the D(t) values vary from lipid to lipid and there is a distribution of D(t) values. The diffusion of the hydrophobic dye DCM (D(t) approximately 5 microm(2)/s) in the DPPC vesicle is found to be 8 times smaller than that of a hydrophilic anioinic dye C343 (D(t) approximately 40 microm(2)/s). This is attributed to different locations of the hydrophobic (DCM) and hydrophilic (C343) dyes.
Journal of Physical Chemistry B | 2008
Aniruddha Adhikari; Shantanu Dey; Dibyendu Das; Ujjwal Mandal; Subhadip Ghosh; Kankan Bhattacharyya
Femtosecond solvation dynamics of coumarin 480 (C480) in a mixed micelle is reported. The mixed micelle consists of a triblock copolymer (PEO)20-(PPO) 70-(PEO)20 (Pluronic P123) and an ionic liquid (IL), 1-pentyl-3-methylimidazolium tetrafluoroborate ([pmim][BF4]). At a low concentration (0.3 M), the sparingly water soluble IL ([pmim][BF4]) penetrates the hydrophobic PPO core of the P123 micelles. Thus emission maximum of C480 in the core (accessed at lambdaex=375 nm) in 0.3 M IL is red-shifted by 8 nm from that in its absence and the red edge excitation shift (REES) is large (19+/-1 nm). At a high concentration (0.9 M), the ionic liquid [pmim][BF4] invades both the core and corona region and the mixed micelle exhibits very small REES (3+/-1 nm). Anisotropy decay and solvation dynamics in different regions of the mixed micelle are studied by variation of excitation wavelength (lambda ex). In P123 micelle, the average rotational time () is 2800 ps in the core (at lambdaex=375 nm) and 1350 ps in the corona region (at lambdaex=435 nm). In 0.3 M [pmim][BF4], tau rot at the core of the mixed micelle decreases to 1950 ps while that in the corona remains unaffected. In 0.9 M IL, both the core and corona (lambda ex=375 and 435 nm) exhibit similar and short approximately 600 ps. In 0.3 M IL, solvation dynamics in the core region (lambdaex=375 nm) of P123 micelle is about 2 times faster than in its absence. In 0.3 M IL, solvation dynamics in the corona region (lambdaex=435 nm) is approximately 100 times faster than that in the core. In 0.9 M IL, the solvation dynamics in the core and in the corona is, respectively, approximately 9 times and 4 times faster than that in 0.3 M IL.
Journal of Physical Chemistry B | 2008
Shantanu Dey; Aniruddha Adhikari; Ujjwal Mandal; Subhadip Ghosh; Kankan Bhattacharyya
Solvation dynamics and anisotropy decay of coumarin 480 (C480) in a supramolecular assembly containing a triblock copolymer, PEO20-PPO70-PEO20 (Pluronic P123) and a surfactant, CTAC (cetyl trimethylammonium chloride) are studied by femtosecond up-conversion. In a P123-CTAC complex, C480 displays a significant (22 nm) red edge excitation shift (REES) in the emission maximum as lambda ex increases from 335 to 445 nm. This suggests that the P123-CTAC aggregate is quite heterogeneous. The average rotational relaxation time (tau rot) of C480 in a P123-CTAC complex decreases by a factor of 2 from 2500 ps at lambda ex = 375 nm to 1200 ps at lambda ex = 435 nm. For lambda ex = 375 nm, the probe molecules in the buried core region of P123-CTAC are excited and the solvation dynamics displays three components, 2, 60, and 4000 ps. It is argued that insertion of CTAC in P123 micelle affects the polymer chain dynamics, and this leads to reduction of the 130 ps component of P123 micelle to 60 ps in P123-CTAC. For lambda ex = 435 nm, which selects the peripheral highly polar corona region, solvation dynamics in P123-CTAC and P123 are extremely fast with a major component of <0.3 ps ( approximately 80%) and a 2 ps ( approximately 20%) component.
ACS Applied Materials & Interfaces | 2017
Aniruddha Adhikari; Jeffrey K. Eliason; Jingya Sun; Riya Bose; David J. Flannigan; Omar F. Mohammed
Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.
Journal of Physical Chemistry Letters | 2016
Jingya Sun; Aniruddha Adhikari; Basamat S. Shaheen; Haoze Yang; Omar F. Mohammed
Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the lasers relatively large penetration depth and consequently these techniques record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and subpicosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the samples surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystal and its powder film. We also discuss the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.