Anirvan Chatterjee
Indian Institute of Technology Bombay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anirvan Chatterjee.
Journal of Clinical Microbiology | 2017
Antonina A. Votintseva; Phelim Bradley; Louise Pankhurst; Carlos del Ojo Elias; Matthew Loose; Kayzad Nilgiriwala; Anirvan Chatterjee; E. Grace Smith; Nicolas Sanderson; Timothy M. Walker; Marcus Morgan; David H. Wyllie; A. Sarah Walker; Tim Peto; Derrick W. Crook; Zamin Iqbal
ABSTRACT Routine full characterization of Mycobacterium tuberculosis is culture based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near the point of care. We demonstrate a low-cost method of DNA extraction directly from patient samples for M. tuberculosis WGS. We initially evaluated the method by using the Illumina MiSeq sequencer (40 smear-positive respiratory samples obtained after routine clinical testing and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction were obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. With Illumina MiSeq/MiniSeq, the workflow from patient sample to results can be completed in 44/16 h at a reagent cost of £96/£198 per sample. We then employed a nonspecific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis strain BCG DNA and to combined culture-negative sputum DNA and BCG DNA. For flow cell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 h, with full susceptibility results 5 h later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis DNA in direct samples.
Journal of Clinical Microbiology | 2010
Anirvan Chatterjee; Desirée T. B. D'souza; Tina S Vira; Arun Bamne; Gurish T. Ambe; Mark P. Nicol; Robert J. Wilkinson; Nerges Mistry
ABSTRACT We performed spoligotyping of Mycobacterium tuberculosis isolates from 833 systematically sampled pulmonary tuberculosis (TB) patients in urban Mumbai, India (723 patients), and adjacent rural areas in western India (110 patients). The urban cohort consisted of two groups of patients, new cases (646 patients) and first-time treatment failures (77 patients), while only new cases were recruited in the rural areas. The isolates from urban new cases showed 71% clustering, with 168 Manu1, 62 CAS, 22 Beijing, and 30 EAI-5 isolates. The isolates from first-time treatment failures were 69% clustered, with 14 Manu1, 8 CAS, 8 Beijing, and 6 EAI-5 isolates. The proportion of Beijing strains was higher in this group than in urban new cases (odds ratio [OR], 3.29; 95% confidence limit [95% CL], 1.29 to 8.14; P = 0.003). The isolates from rural new cases showed 69% clustering, with 38 Manu1, 7 CAS, and 1 EAI-5 isolate. Beijing was absent in the rural cohort. Manu1 was found to be more common in the rural cohort (OR, 0.67; 95% CL, 0.42 to 1.05; P = 0.06). In total, 71% of isolates were clustered into 58 spoligotypes with 4 predominant strains, Manu1 (26%), CAS (9%), EAI-5 (4%), and Beijing (4%), along with 246 unique spoligotypes. In the isolates from urban new cases, we found Beijing to be associated with multidrug resistance (MDR) (OR, 3.40; 95% CL, 1.20 to 9.62; P = 0.02). CAS was found to be associated with pansensitivity (OR, 1.83; 95% CL, 1.03 to 3.24; P = 0.03) and cavities as seen on chest radiographs (OR, 2.72; 95% CL, 1.34 to 5.53; P = 0.006). We recorded 239 new spoligotypes yet unreported in the global databases, suggesting that the local TB strains exhibit a high degree of diversity.
PLOS ONE | 2013
Anirvan Chatterjee; Dhananjaya Saranath; Purva Bhatter; Nerges Mistry
The identification of multidrug resistant (MDR), extensively and totally drug resistant Mycobacterium tuberculosis (Mtb), in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS) compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS) at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S) microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB), cell wall biosynthesis (emb genes), protein synthesis (rpl) and additional central metabolic pathways (ppdK, pknH, pfkB) were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB) in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with least fitness cost.
PLOS ONE | 2012
Purva Bhatter; Anirvan Chatterjee; Desirée T. B. D'souza; Monica Tolani; Nerges Mistry
Background Multi Drug Resistant Tuberculosis (MDR TB) is a threat to global tuberculosis control. A significant fitness cost has been associated with DR strains from specific lineages. Evaluation of the influence of the competing drug susceptible strains on fitness of drug resistant strains may have an important bearing on understanding the spread of MDR TB. The aim of this study was to evaluate the fitness of MDR TB strains, from a TB endemic region of western India: Mumbai, belonging to 3 predominant lineages namely CAS, Beijing and MANU in the presence of drug susceptible strains from the same lineages. Methodology Drug susceptible strains from a single lineage were mixed with drug resistant strain, bearing particular non synonymous mutation (rpoB D516V; inhA, A16G; katG, S315T1/T2) from the same or different lineages. Fitness of M.tuberculosis (M.tb) strains was evaluated using the difference in growth rates obtained by using the CFU assay system. Conclusion/Significance While MANU were most fit amongst the drug susceptible strains of the 3 lineages, only Beijing MDR strains were found to grow in the presence of any of the competing drug susceptible strains. A disproportionate increase in Beijing MDR could be an alarm for an impending epidemic in this locale. In addition to particular non synonymous substitutions, the competing strains in an environment may impact the fitness of circulating drug resistant strains.
Genomics data | 2016
Anirvan Chatterjee; Farhan Ali; Disha Bange; Kiran Kondabagil
We report the isolation and complete genome sequencing of a new Mimiviridae family member, infecting Acanthamoeba castellanii, from sewage in Mumbai, India. The isolated virus has a particle size of about 435 nm and a 1,182,200-bp genome. A phylogeny based on the DNA polymerase sequence placed the isolate as a new member of the Mimiviridae family lineage A and was named as Mimivirus bombay. Extensive presence of Mimiviridae family members in different environmental niches, with remarkably similar genome size and genetic makeup, point towards an evolutionary advantage that needs to be further investigated. The complete genome sequence of Mimivirus bombay was deposited at GenBank/EMBL/DDBJ under the accession number KU761889.
Genome Announcements | 2016
Anirvan Chatterjee; Farhan Ali; Disha Bange; Kiran Kondabagil
ABSTRACT We report here the isolation and complete genome sequencing of a large double-stranded DNA virus, Powai Lake megavirus, for the first time from India. The isolation of a large DNA virus with genome size >1 Mb from India further attests to the prevalence of Giant viruses in different environmental niches.
Indian Journal of Public Health | 2011
Sachin R Atre; Desirée T. B. D'souza; Tina S Vira; Anirvan Chatterjee; Nerges Mistry
BACKGROUND Multidrug - resistant TB (MDR - TB) has emerged as a major threat to global TB control efforts in recent years. Facilities for its diagnosis and treatment are limited in many high - burden countries, including India. In hyper - endemic areas like Mumbai, screening for newly diagnosed cases at a higher risk of acquiring MDR - TB is necessary, for initiating appropriate and timely treatment, to prevent its further spread. OBJECTIVE To assess risk factors associated with MDR - TB among Category I, new sputum smear-positive cases, at the onset of therapy. MATERIALS AND METHODS The study applied an unmatched case - control design for 514 patients (106 cases with MDR - TB strains and 408 controls with non - MDR - TB strains). The patients were registered with the Revised National Tuberculosis Control Program (RNTCP) in four selected wards of Mumbai during April 2004 - January 2007. Data were collected through semi - structured interviews and drug susceptibility test results. RESULTS Multivariate analysis indicated that infection with the Beijing strain (OR = 3.06; 95% C.I. = 1.12 - 8.38; P = 0.029) and female gender (OR = 1.68; 95% C.I. = 1.02 - 2.87; P = 0.042) were significant predictors of MDR-TB at the onset of therapy. CONCLUSION The study provides a starting point to further examine the usefulness of these risk factors as screening tools in identifying individuals with MDR-TB, in settings where diagnostic and treatment facilities for MDR-TB are limited.
Virus Evolution | 2018
Avi Shukla; Anirvan Chatterjee; Kiran Kondabagil
Abstract Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption.
Tuberculosis | 2012
Purva Bhatter; Anirvan Chatterjee; Nerges Mistry
Multi Drug Resistant Tuberculosis Beijing strains exhibit different drug-resistance mutations (DRM) in different locations. By comparing DRM in Beijing reported from Tuberculosis endemic and epidemic locations, we propose that DRM selected in a population cannot tolerate biologically available drugs in different populations resulting in further evolution through novel DRM.
Tuberculosis | 2017
Anirvan Chatterjee; Kayzad Nilgiriwala; Dhananjaya Saranath; Camilla Rodrigues; Nerges Mistry
Amplification of drug resistance in Mycobacterium tuberculosis (M.tb) and its transmission are significant barriers in controlling tuberculosis (TB) globally. Diagnostic inaccuracies and delays impede appropriate drug administration, which exacerbates primary and secondary drug resistance. Increasing affordability of whole genome sequencing (WGS) and exhaustive cataloguing of drug resistance mutations is poised to revolutionise TB diagnostics and facilitate personalized drug therapy. However, application of WGS for diagnostics in high endemic areas is yet to be demonstrated. We report WGS of 74 clinical TB isolates from Mumbai, India, characterising genotypic drug resistance to first- and second-line anti-TB drugs. A concordance analysis between phenotypic and genotypic drug susceptibility of a subset of 29 isolates and the sensitivity of resistance prediction to the 4 drugs was calculated, viz. isoniazid-100%, rifampicin-100%, ethambutol-100% and streptomycin-85%. The whole genome based phylogeny showed almost equal proportion of East Asian (27/74) and Central Asian (25/74) strains. Interestingly we also found a clonal group of 9 isolates, of which 7 patients were found to be from the same geographical location and accessed the same health post. This provides the first evidence of epidemiological linkage for tracking TB transmission in India, an approach which has the potential to significantly improve chances of End-TB goals. Finally, the use of Mykrobe Predictor, as a standalone drug resistance and strain typing tool, requiring just few minutes to analyse raw WGS data into tabulated results, implies the rapid clinical applicability of WGS based TB diagnosis.