Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zamin Iqbal is active.

Publication


Featured researches published by Zamin Iqbal.


Nature | 2011

Mapping copy number variation by population-scale genome sequencing

Ryan E. Mills; Klaudia Walter; Chip Stewart; Robert E. Handsaker; Ken Chen; Can Alkan; Alexej Abyzov; Seungtai Yoon; Kai Ye; R. Keira Cheetham; Asif T. Chinwalla; Donald F. Conrad; Yutao Fu; Fabian Grubert; Iman Hajirasouliha; Fereydoun Hormozdiari; Lilia M. Iakoucheva; Zamin Iqbal; Shuli Kang; Jeffrey M. Kidd; Miriam K. Konkel; Joshua M. Korn; Ekta Khurana; Deniz Kural; Hugo Y. K. Lam; Jing Leng; Ruiqiang Li; Yingrui Li; Chang-Yun Lin; Ruibang Luo

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Nature Genetics | 2012

De novo assembly and genotyping of variants using colored de Bruijn graphs

Zamin Iqbal; Mario Caccamo; Isaac Turner; Paul Flicek; Gil McVean

Detecting genetic variants that are highly divergent from a reference sequence remains a major challenge in genome sequencing. We introduce de novo assembly algorithms using colored de Bruijn graphs for detecting and genotyping simple and complex genetic variants in an individual or population. We provide an efficient software implementation, Cortex, the first de novo assembler capable of assembling multiple eukaryotic genomes simultaneously. Four applications of Cortex are presented. First, we detect and validate both simple and complex structural variations in a high-coverage human genome. Second, we identify more than 3 Mb of sequence absent from the human reference genome, in pooled low-coverage population sequence data from the 1000 Genomes Project. Third, we show how population information from ten chimpanzees enables accurate variant calls without a reference sequence. Last, we estimate classical human leukocyte antigen (HLA) genotypes at HLA-B, the most variable gene in the human genome.


Nature Genetics | 2014

Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications

Andy Rimmer; Hang Phan; Iain Mathieson; Zamin Iqbal; Stephen R.F. Twigg; Andrew O.M. Wilkie; Gil McVean; Gerton Lunter

High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.


Science | 2012

A Fine-Scale Chimpanzee Genetic Map from Population Sequencing

Adam Auton; Adi Fledel-Alon; Susanne P. Pfeifer; Oliver Venn; Laure Ségurel; Teresa Street; Ellen M. Leffler; Rory Bowden; Ivy Aneas; John Broxholme; Peter Humburg; Zamin Iqbal; Gerton Lunter; Julian Maller; Ryan D. Hernandez; Cord Melton; Aarti Venkat; Marcelo A. Nobrega; Ronald E. Bontrop; Simon Myers; Peter Donnelly; Molly Przeworski; Gil McVean

Going Ape Over Genetic Maps Recombination is an important process in generating diversity and producing selectively advantageous genetic combinations. Thus, changes in recombination hotspots may influence speciation. To investigate the variation in recombination processes in humans and their closest existing relatives, Auton et al. (p. 193, published online 15 March) prepared a fine-scale genetic map of the Western chimpanzee and compared it with that of humans. While rates of recombination are comparable between humans and chimpanzees, the locations and genetic motifs associated with recombination differ between the species. Chimpanzees show similar genetic recombination rates as humans but differ in the genomic regions involved. To study the evolution of recombination rates in apes, we developed methodology to construct a fine-scale genetic map from high-throughput sequence data from 10 Western chimpanzees, Pan troglodytes verus. Compared to the human genetic map, broad-scale recombination rates tend to be conserved, but with exceptions, particularly in regions of chromosomal rearrangements and around the site of ancestral fusion in human chromosome 2. At fine scales, chimpanzee recombination is dominated by hotspots, which show no overlap with those of humans even though rates are similarly elevated around CpG islands and decreased within genes. The hotspot-specifying protein PRDM9 shows extensive variation among Western chimpanzees, and there is little evidence that any sequence motifs are enriched in hotspots. The contrasting locations of hotspots provide a natural experiment, which demonstrates the impact of recombination on base composition.


Lancet Infectious Diseases | 2015

Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study.

Timothy M. Walker; Thomas A. Kohl; Shaheed V. Omar; Jessica Hedge; Carlos del Ojo Elias; Phelim Bradley; Zamin Iqbal; Silke Feuerriegel; Katherine E. Niehaus; Daniel J. Wilson; David A. Clifton; Georgia Kapatai; Camilla L. C. Ip; Rory Bowden; Francis Drobniewski; Caroline Allix-Béguec; Cyril Gaudin; Julian Parkhill; Roland Diel; Philip Supply; Derrick W. Crook; E. Grace Smith; A. Sarah Walker; Nazir Ismail; Stefan Niemann; Tim Peto

Summary Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early. Funding Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease

Bernadette C. Young; Tanya Golubchik; Elizabeth M. Batty; Rowena Fung; Hanna Larner-Svensson; Antonina A. Votintseva; Ruth R. Miller; Heather Godwin; Kyle Knox; Richard G. Everitt; Zamin Iqbal; Andrew J. Rimmer; Madeleine Cule; Camilla L. C. Ip; Xavier Didelot; Rosalind M. Harding; Peter Donnelly; Tim Peto; Derrick W. Crook; Rory Bowden; Daniel J. Wilson

Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staphylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. However, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with methicillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a premature stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of protein-truncating mutations are highly unusual. Our results demonstrate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.


Emerging Infectious Diseases | 2014

Rapid Whole-Genome Sequencing for Surveillance of Salmonella enterica Serovar Enteritidis

Henk C. den Bakker; Marc W. Allard; Dianna J. Bopp; Eric W. Brown; John Fontana; Zamin Iqbal; Aristea Kinney; Ronald J. Limberger; Kimberlee A. Musser; Matthew Shudt; Errol Strain; Martin Wiedmann; William J. Wolfgang

For Salmonella enterica serovar Enteritidis, 85% of isolates can be classified into 5 pulsed-field gel electrophoresis (PFGE) types. However, PFGE has limited discriminatory power for outbreak detection. Although whole-genome sequencing has been found to improve discrimination of outbreak clusters, whether this procedure can be used in real-time in a public health laboratory is not known. Therefore, we conducted a retrospective and prospective analysis. The retrospective study investigated isolates from 1 confirmed outbreak. Additional cases could be attributed to the outbreak strain on the basis of whole-genome data. The prospective study included 58 isolates obtained in 2012, including isolates from 1 epidemiologically defined outbreak. Whole-genome sequencing identified additional isolates that could be attributed to the outbreak, but which differed from the outbreak-associated PFGE type. Additional putative outbreak clusters were detected in the retrospective and prospective analyses. This study demonstrates the practicality of implementing this approach for outbreak surveillance in a state public health laboratory.


Nature Genetics | 2015

The genomic and phenotypic diversity of Schizosaccharomyces pombe

Daniel C. Jeffares; Charalampos Rallis; Adrien Rieux; Doug Speed; Martin Převorovský; Tobias Mourier; Francesc Xavier Marsellach; Zamin Iqbal; Winston Lau; Tammy M.K. Cheng; Rodrigo Pracana; Michael Mülleder; Jonathan L.D. Lawson; Anatole Chessel; Sendu Bala; Garrett Hellenthal; Brendan O'Fallon; Thomas M. Keane; Jared T. Simpson; Leanne Bischof; Bartłomiej Tomiczek; Danny A. Bitton; Theodora Sideri; Sandra Codlin; Josephine E E U Hellberg; Laurent van Trigt; Linda Jeffery; Juan Juan Li; Sophie R. Atkinson; Malte Thodberg

Natural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the usefulness of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all strains, finding moderate genetic diversity (π = 3 × 10−3 substitutions/site) and weak global population structure. We estimate that dispersal of S. pombe began during human antiquity (∼340 BCE), and ancestors of these strains reached the Americas at ∼1623 CE. We quantified 74 traits, finding substantial heritable phenotypic diversity. We conducted 223 genome-wide association studies, with 89 traits showing at least one association. The most significant variant for each trait explained 22% of the phenotypic variance on average, with indels having larger effects than SNPs. This analysis represents a rich resource to examine genotype-phenotype relationships in a tractable model.


Journal of Clinical Microbiology | 2017

Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples.

Antonina A. Votintseva; Phelim Bradley; Louise Pankhurst; Carlos del Ojo Elias; Matthew Loose; Kayzad Nilgiriwala; Anirvan Chatterjee; E. Grace Smith; Nicolas Sanderson; Timothy M. Walker; Marcus Morgan; David H. Wyllie; A. Sarah Walker; Tim Peto; Derrick W. Crook; Zamin Iqbal

ABSTRACT Routine full characterization of Mycobacterium tuberculosis is culture based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near the point of care. We demonstrate a low-cost method of DNA extraction directly from patient samples for M. tuberculosis WGS. We initially evaluated the method by using the Illumina MiSeq sequencer (40 smear-positive respiratory samples obtained after routine clinical testing and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction were obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. With Illumina MiSeq/MiniSeq, the workflow from patient sample to results can be completed in 44/16 h at a reagent cost of £96/£198 per sample. We then employed a nonspecific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis strain BCG DNA and to combined culture-negative sputum DNA and BCG DNA. For flow cell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 h, with full susceptibility results 5 h later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis DNA in direct samples.


Nature Genetics | 2015

Improved genome inference in the MHC using a population reference graph

Alexander Dilthey; Charles J. Cox; Zamin Iqbal; Matthew R. Nelson; Gil McVean

Although much is known about human genetic variation, such information is typically ignored in assembling new genomes. Instead, reads are mapped to a single reference, which can lead to poor characterization of regions of high sequence or structural diversity. We introduce a population reference graph, which combines multiple reference sequences and catalogs of variation. The genomes of new samples are reconstructed as paths through the graph using an efficient hidden Markov model, allowing for recombination between different haplotypes and additional variants. By applying the method to the 4.5-Mb extended MHC region on human chromosome 6, combining 8 assembled haplotypes, the sequences of known classical HLA alleles and 87,640 SNP variants from the 1000 Genomes Project, we demonstrate using simulations, SNP genotyping, and short-read and long-read data how the method improves the accuracy of genome inference and identified regions where the current set of reference sequences is substantially incomplete.

Collaboration


Dive into the Zamin Iqbal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phelim Bradley

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge