Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anisha Dayaram is active.

Publication


Featured researches published by Anisha Dayaram.


Journal of General Virology | 2012

Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta)

Karyna Rosario; Anisha Dayaram; Milen Marinov; Jessica L. Ware; Simona Kraberger; Daisy Stainton; Mya Breitbart; Arvind Varsani

Viruses with circular ssDNA genomes that encode a replication initiator protein (Rep) are among the smallest viruses known to infect both eukaryotic and prokaryotic organisms. In the past few years an overwhelming diversity of novel circular Rep-encoding ssDNA (CRESS-DNA) viruses has been unearthed from various hosts and environmental sources. Since there is limited information regarding CRESS-DNA viruses in invertebrates, this study explored the diversity of CRESS-DNA viruses circulating among insect populations by targeting dragonflies (Epiprocta), top insect predators that accumulate viruses from their insect prey over space and time. Using degenerate PCR and rolling circle amplification coupled with restriction digestion, 17 CRESS-DNA viral genomes were recovered from eight different dragonfly species collected in tropical and temperate regions. Nine of the genomes are similar to cycloviruses and represent five species within this genus, suggesting that cycloviruses are commonly associated with insects. Three of the CRESS-DNA viruses share conserved genomic features with recently described viruses similar to the mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, leading to the proposal of the genus Gemycircularvirus. The remaining viruses are divergent species representing four novel CRESS-DNA viral genera, including a gokushovirus-like prokaryotic virus (microphage) and three eukaryotic viruses with Reps similar to circoviruses. The novelty of CRESS-DNA viruses identified in dragonflies using simple molecular techniques indicates that there is an unprecedented diversity of ssDNA viruses among insect populations.


Journal of General Virology | 2013

High global diversity of cycloviruses amongst dragonflies

Anisha Dayaram; Kristen A. Potter; Angela B. Moline; Dana Drake Rosenstein; Milen Marinov; J. E. Thomas; Mya Breitbart; Karyna Rosario; Gerardo R. Argüello-Astorga; Arvind Varsani

Members of the family Circoviridae, specifically the genus Circovirus, were thought to infect only vertebrates; however, members of a sister group under the same family, the proposed genus Cyclovirus, have been detected recently in insects. In an effort to explore the diversity of cycloviruses and better understand the evolution of these novel ssDNA viruses, here we present five cycloviruses isolated from three dragonfly species (Orthetrum sabina, Xanthocnemis zealandica and Rhionaeschna multicolor) collected in Australia, New Zealand and the USA, respectively. The genomes of these five viruses share similar genome structure to other cycloviruses, with a circular ~1.7 kb genome and two major bidirectionally transcribed ORFs. The genomic sequence data gathered during this study were combined with all cyclovirus genomes available in public databases to identify conserved motifs and regulatory elements in the intergenic regions, as well as determine diversity and recombinant regions within their genomes. The genomes reported here represent four different cyclovirus species, three of which are novel. Our results confirm that cycloviruses circulate widely in winged-insect populations; in eight different cyclovirus species identified in dragonflies to date, some of these exhibit a broad geographical distribution. Recombination analysis revealed both intra- and inter-species recombination events amongst cycloviruses, including genomes recovered from disparate sources (e.g. goat meat and human faeces). Similar to other well-characterized circular ssDNA viruses, recombination may play an important role in cyclovirus evolution.


Infection, Genetics and Evolution | 2015

Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA

Anisha Dayaram; Kristen A. Potter; Roberta Pailes; Milen Marinov; Dana Drake Rosenstein; Arvind Varsani

Next generation sequencing and metagenomic approaches are commonly used for the identification of circular replication associated protein (Rep)-encoding single stranded (CRESS) DNA viruses circulating in various environments. These approaches have enabled the discovery of some CRESS DNA viruses associated with insects. In this study we identified and recovered 31 viral genomes which represent 24 distinct CRESS DNA viruses from seven dragonfly species (Rhionaeschna multicolor, Erythemis simplicicollis, Erythrodiplax fusca, Libellula quadrimaculata, Libellula saturata, Pachydiplax longipennis, and Pantala hymenaea) and two damselfly species (Ischnura posita, Ischnura ramburii) sampled in various locations in the states of Arizona and Oklahoma of the United States of America (USA). We also identified Sclerotinia sclerotiorum hypovirulence-associated DNA virus-1 (SsHADV-1) in P. hymenaea, E. simplicicollis and I. ramburii sampled in Oklahoma, which is the first report of SsHADV-1 in the New World. The genome architectures of the CRESS DNA viruses recovered vary, but they all have at least two major open reading frames (ORFs) that have either a bidirectional or unidirectional arrangement. Four of the viral genomes recovered, in addition to the three isolates of SsHADV-1, show similarities to viruses of the proposed gemycircularvirus group. Analysis of the Rep encoded by the remaining 24 viral genomes reveals that these are highly diverse and allude to the fact that they represent novel CRESS DNA viruses.


Infection, Genetics and Evolution | 2014

Novel circular DNA viruses identified in Procordulia grayi and Xanthocnemis zealandica larvae using metagenomic approaches.

Anisha Dayaram; Mark L. Galatowitsch; Jon S. Harding; Gerardo R. Argüello-Astorga; Arvind Varsani

Recent advances in sequencing and metagenomics have enabled the discovery of many novel single stranded DNA (ssDNA) viruses from various environments. We have previously demonstrated that adult dragonflies, as predatory insects, are useful indicators of ssDNA viruses in terrestrial ecosystems. Here we recover and characterise 13 viral genomes which represent 10 novel and diverse circular replication associated protein (Rep)-encoding single stranded (CRESS) DNA viruses (1628-2668nt) from Procordulia grayi and Xanthocnemis zealandica dragonfly larvae collected from four high-country lakes in the South Island of New Zealand. The dragonfly larvae associated CRESS DNA viruses have different genome architectures, however, they all encode two major open reading frames (ORFs) which either have bidirectional or unidirectional arrangement. The 13 viral genomes have a conserved NAGTATTAC nonanucleotide motif and in their predicted Rep proteins we identified the rolling circle replication (RCR) motif 1, 2 and 3, as well as superfamily 3 (SF3) helicase motifs. Maximum likelihood phylogenetic and pairwise identity analysis of the Rep amino acid sequences reveal that the dragonfly larvae novel CRESS DNA viruses share <63% pairwise amino acid identity to the Reps of other CRESS DNA viruses whose complete genomes have been determined and available in public databases and that these viruses are novel. CRESS DNA viruses are circulating in larval dragonfly populations; however, we are unable to ascertain whether these viruses are infecting the larvae directly or are transient within dragonflies via their diet.


Genome Announcements | 2013

Discovery of Sclerotinia sclerotiorum Hypovirulence-Associated Virus-1 in Urban River Sediments of Heathcote and Styx Rivers in Christchurch City, New Zealand

Simona Kraberger; Daisy Stainton; Anisha Dayaram; Christopher Gomez; Jon S. Harding; Arvind Varsani

ABSTRACT In samples of benthic and bank river sediments of two urban rivers in Christchurch city (New Zealand), we identified and recovered isolates of Sclerotinia sclerotiorum hypovirulence-associated virus-1 (SsHADV-1), a fungus-infecting circular single-stranded DNA virus. This is the first report of SsHADV-1 outside of China and in environmental samples.


Infection, Genetics and Evolution | 2016

Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem.

Anisha Dayaram; Mark L. Galatowitsch; Gerardo R. Argüello-Astorga; Katherine van Bysterveldt; Simona Kraberger; Daisy Stainton; Jon S. Harding; Philippe Roumagnac; Darren Patrick Martin; Pierre Lefeuvre; Arvind Varsani

Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates.


Infection, Genetics and Evolution | 2016

Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand.

Olivia Steel; Simona Kraberger; Alyssa Sikorski; Laura M. Young; Ryan J. Catchpole; Aaron J. Stevens; Jenny J. Ladley; Dorien S. Coray; Daisy Stainton; Anisha Dayaram; Laurel Julian; Katherine van Bysterveldt; Arvind Varsani

In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified.


Infection, Genetics and Evolution | 2015

Diverse small circular DNA viruses circulating amongst estuarine molluscs

Anisha Dayaram; Sharyn J. Goldstien; Gerardo R. Argüello-Astorga; Christopher Gomez; Jon S. Harding; Arvind Varsani

Our understanding of the diversity and abundance of circular replication associated protein (Rep) - encoding single stranded (CRESS) DNA viruses has increased considerably over the last few years due to a combination of modern sequencing technologies and new molecular tools. Studies have used these to identify and recover CRESS DNA viruses from a range of different marine organisms, including copepods, shrimp and molluscs. In our study we identified 79 novel CRESS DNA viruses from three mollusc species (Austrovenus stutchburyi, Paphies subtriangulata and Amphibola crenata) and benthic sediments from the Avon-Heathcote estuary in Christchurch, New Zealand. The genomes recovered have varying genome architectures, with all encoding at least two major ORFs that have either unidirectional or bidirectional organisation. Analysis of the Reps of the viral genomes showed they are all highly diverse, with only one Rep sequence sharing 65% amino acid identity with the Rep of gastropod-associated circular DNA virus (GaCSV). Our study adds significantly to the wealth of CRESS DNA viruses recovered from freshwater and marine environments and extends our knowledge of the distribution of these viruses.


Genome Announcements | 2013

Identification of a Novel Circular DNA Virus in New Zealand Fur Seal (Arctocephalus forsteri) Fecal Matter

Alyssa Sikorski; Anisha Dayaram; Arvind Varsani

ABSTRACT Fur seal feces-associated circular DNA virus (FSfaCV) is a novel virus isolated from the fecal matter of New Zealand fur seals. FSfaCV has two main open reading frames in its 2,925-nucleotide (nt) genome. The replication-associated protein (Rep) of FSfaCV has similarity to Rep-like sequences in the Giardia intestinalis genome.


Virus Research | 2012

Australian monocot-infecting mastrevirus diversity rivals that in Africa

Simona Kraberger; J. E. Thomas; Andrew D. W. Geering; Anisha Dayaram; Daisy Stainton; James Hadfield; Matthew Walters; Kathleen Parmenter; Sharon van Brunschot; David A. Collings; Darren P. Martin; Arvind Varsani

Monocotyledonous plant infecting mastreviruses (family Geminiviridae) have been found in the Old World. The greatest diversity of these viruses has been found in Africa but this may simply reflect the more extensive sampling that has been done there. To provide a better understanding of mastrevirus diversity in Australia, we have sequenced the genomes of 41 virus isolates found in naturalised and native grasses and identified four new species in addition to the four previously characterised species. Two of these species, which were recovered from a single Sporobolus plant, are highly divergent and are most closely related to the African streak viruses. This, coupled with the discovery of divergent dicotyledonous plant infecting mastreviruses in Australia brings into question the hypothesis that mastreviruses may have originated in Africa. We found that the patterns of inter- and intra-species recombination and the recombination hotspots mirror those found in both their African monocot-infecting counterparts and dicot-infecting mastrevirus.

Collaboration


Dive into the Anisha Dayaram's collaboration.

Top Co-Authors

Avatar

Arvind Varsani

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisy Stainton

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

Jon S. Harding

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

Gerardo R. Argüello-Astorga

Instituto Potosino de Investigación Científica y Tecnológica

View shared research outputs
Top Co-Authors

Avatar

Milen Marinov

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge