Daisy Stainton
University of Canterbury
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daisy Stainton.
Journal of General Virology | 2012
Karyna Rosario; Anisha Dayaram; Milen Marinov; Jessica L. Ware; Simona Kraberger; Daisy Stainton; Mya Breitbart; Arvind Varsani
Viruses with circular ssDNA genomes that encode a replication initiator protein (Rep) are among the smallest viruses known to infect both eukaryotic and prokaryotic organisms. In the past few years an overwhelming diversity of novel circular Rep-encoding ssDNA (CRESS-DNA) viruses has been unearthed from various hosts and environmental sources. Since there is limited information regarding CRESS-DNA viruses in invertebrates, this study explored the diversity of CRESS-DNA viruses circulating among insect populations by targeting dragonflies (Epiprocta), top insect predators that accumulate viruses from their insect prey over space and time. Using degenerate PCR and rolling circle amplification coupled with restriction digestion, 17 CRESS-DNA viral genomes were recovered from eight different dragonfly species collected in tropical and temperate regions. Nine of the genomes are similar to cycloviruses and represent five species within this genus, suggesting that cycloviruses are commonly associated with insects. Three of the CRESS-DNA viruses share conserved genomic features with recently described viruses similar to the mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, leading to the proposal of the genus Gemycircularvirus. The remaining viruses are divergent species representing four novel CRESS-DNA viral genera, including a gokushovirus-like prokaryotic virus (microphage) and three eukaryotic viruses with Reps similar to circoviruses. The novelty of CRESS-DNA viruses identified in dragonflies using simple molecular techniques indicates that there is an unprecedented diversity of ssDNA viruses among insect populations.
Journal of General Virology | 2011
Karyna Rosario; Milen Marinov; Daisy Stainton; Simona Kraberger; Elizabeth J. Wiltshire; David A. Collings; Matthew Walters; Darren P. Martin; Mya Breitbart; Arvind Varsani
Dragonfly cyclovirus (DfCyV), a new species of ssDNA virus discovered using viral metagenomics in dragonflies (family Libellulidae) from the Kingdom of Tonga. Metagenomic sequences of DfCyV were similar to viruses of the recently proposed genus Cyclovirus within the family Circoviridae. Specific PCRs resulted in the recovery of 21 DfCyV genomes from three dragonfly species (Pantala flavescens, Tholymis tillarga and Diplacodes bipunctata). The 1741 nt DfCyV genomes share >95 % nucleotide identity and are classified into 11 subtypes representing a single strain. The DfCyV genomes share 48-63 % genome-wide nucleotide identity with cycloviruses identified in human faecal samples. Recombination analysis revealed three recombinant DfCyV genomes, suggesting that recombination plays an important role in cyclovirus evolution. To our knowledge, this is the first report of a circular ssDNA virus identified in insects, and the data may help elucidate evolutionary links among novel Circoviridae recently identified in animals and environmental samples.
Infection, Genetics and Evolution | 2014
Gerardo R. Argüello-Astorga; Simona Kraberger; Laurel Julian; Daisy Stainton; Paul A. Broady; Arvind Varsani
Antarctica has some of the harshest environmental conditions for existence of life on Earth. In this pilot study we recovered eight diverse circular single-stranded DNA (ssDNA) viral genome sequences (1904-3120 nts) from benthic mats dominated by filamentous cyanobacteria in a freshwater pond on the McMurdo Ice Shelf sampled in 1988. All genomes contain two to three major open reading frames (ORFs) that are uni- or bi-directionally transcribed and all have an ORF encoding a replication-associated protein (Rep). In one genome, the second ORF has similarity to a capsid protein (CP) of Nepavirus which is most closely related to geminiviruses. Additionally, all genomes have two intergenic regions that contain putative stem loop structures, six genomes have NANTATTAC as the nonanucleotide motif, while one has CCTTATTAC, and another has a non-canonical stem loop. In the large intergenic region, we identified iterative sequences flanking the putative stem-loop elements which are a hallmark of most circular ssDNA viruses encoding rolling circle replication (RCR) initiators of the HUH endonuclease superfamily. The Reps encoded by ssDNA viral genomes recovered in this study shared <38% pairwise identity to all other Reps of known ssDNA viruses. A previous study on Lake Limnopolar (Livingston Island, South Shetland Islands), using next-generation sequencing identified circular ssDNA viruses and their putative Reps share <35% pairwise identity to those from the viral genomes removed in this study. It is evident from our pilot study that the global diversity of ssDNA viruses is grossly underestimated and there is limited knowledge on ssDNA viruses in Antarctica.
Genome Announcements | 2013
Simona Kraberger; Daisy Stainton; Anisha Dayaram; Christopher Gomez; Jon S. Harding; Arvind Varsani
ABSTRACT In samples of benthic and bank river sediments of two urban rivers in Christchurch city (New Zealand), we identified and recovered isolates of Sclerotinia sclerotiorum hypovirulence-associated virus-1 (SsHADV-1), a fungus-infecting circular single-stranded DNA virus. This is the first report of SsHADV-1 outside of China and in environmental samples.
Infection, Genetics and Evolution | 2016
Anisha Dayaram; Mark L. Galatowitsch; Gerardo R. Argüello-Astorga; Katherine van Bysterveldt; Simona Kraberger; Daisy Stainton; Jon S. Harding; Philippe Roumagnac; Darren Patrick Martin; Pierre Lefeuvre; Arvind Varsani
Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates.
Infection, Genetics and Evolution | 2016
Olivia Steel; Simona Kraberger; Alyssa Sikorski; Laura M. Young; Ryan J. Catchpole; Aaron J. Stevens; Jenny J. Ladley; Dorien S. Coray; Daisy Stainton; Anisha Dayaram; Laurel Julian; Katherine van Bysterveldt; Arvind Varsani
In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified.
Virus Evolution | 2017
Koenraad Van Doorslaer; Valeria Ruoppolo; Annie Schmidt; Amélie Lescroël; Dennis Jongsomjit; Megan Elrod; Simona Kraberger; Daisy Stainton; Katie M. Dugger; Grant Ballard; David G. Ainley; Arvind Varsani
Abstract The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.
Virus Research | 2012
Simona Kraberger; J. E. Thomas; Andrew D. W. Geering; Anisha Dayaram; Daisy Stainton; James Hadfield; Matthew Walters; Kathleen Parmenter; Sharon van Brunschot; David A. Collings; Darren P. Martin; Arvind Varsani
Monocotyledonous plant infecting mastreviruses (family Geminiviridae) have been found in the Old World. The greatest diversity of these viruses has been found in Africa but this may simply reflect the more extensive sampling that has been done there. To provide a better understanding of mastrevirus diversity in Australia, we have sequenced the genomes of 41 virus isolates found in naturalised and native grasses and identified four new species in addition to the four previously characterised species. Two of these species, which were recovered from a single Sporobolus plant, are highly divergent and are most closely related to the African streak viruses. This, coupled with the discovery of divergent dicotyledonous plant infecting mastreviruses in Australia brings into question the hypothesis that mastreviruses may have originated in Africa. We found that the patterns of inter- and intra-species recombination and the recombination hotspots mirror those found in both their African monocot-infecting counterparts and dicot-infecting mastrevirus.
Viruses | 2015
Karyna Rosario; Yee Mey Seah; Christian Marr; Arvind Varsani; Simona Kraberger; Daisy Stainton; Enrique Moriones; Jane E. Polston; Siobain Duffy; Mya Breitbart
Whitefly-transmitted viruses belonging to the genus Begomovirus (family Geminiviridae) represent a substantial threat to agricultural food production. The rapid evolutionary potential of these single-stranded DNA viruses combined with the polyphagous feeding behavior of their whitefly vector (Bemisia tabaci) can lead to the emergence of damaging viral strains. Therefore, it is crucial to characterize begomoviruses circulating in different regions and crops globally. This study utilized vector-enabled metagenomics (VEM) coupled with high-throughput sequencing to survey begomoviruses directly from whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Begomoviruses were detected in all locations, with the highest diversity identified in Guatemala where up to seven different species were identified in a single field. Both bipartite and monopartite viruses were detected, including seven new begomovirus species from Guatemala, Puerto Rico, and Spain. This begomovirus survey extends the known diversity of these highly damaging plant viruses. However, the new genomes described here and in the recent literature appear to reflect the outcome of interactions between closely-related species, often resulting from recombination, instead of unique, highly divergent species.
Viruses | 2016
Karyna Rosario; Christian Marr; Arvind Varsani; Simona Kraberger; Daisy Stainton; Enrique Moriones; Jane E. Polston; Mya Breitbart
Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640–750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.