Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Mol is active.

Publication


Featured researches published by Anita Mol.


Annals of Biomedical Engineering | 2005

Tissue Engineering of Human Heart Valve Leaflets: A Novel Bioreactor for a Strain-Based Conditioning Approach

Anita Mol; Niels J. B. Driessen; Marcel C. M. Rutten; Simon P. Hoerstrup; Carlijn Carlijn Bouten; Frank P. T. Baaijens

Current mechanical conditioning approaches for heart valve tissue engineering concentrate on mimicking the opening and closing behavior of the leaflets, either or not in combination with tissue straining. This study describes a novel approach by mimicking only the diastolic phase of the cardiac cycle, resulting in tissue straining. A novel, yet simplified, bioreactor system was developed for this purpose by applying a dynamic pressure difference over a closed tissue engineered valve, thereby inducing dynamic strains within the leaflets. Besides the use of dynamic strains, the developing leaflet tissues were exposed to prestrain induced by the use of a stented geometry. To demonstrate the feasibility of this strain-based conditioning approach, human heart valve leaflets were engineered and their mechanial behavior evaluated. The actual dynamic strain magnitude in the leaflets over time was estimated using numerical analyses. Preliminary results showed superior tissue formation and non-linear tissue-like mechanical properties in the strained valves when compared to non-loaded tissue strips. In conclusion, the strain-based conditioning approach, using both prestrain and dynamic strains, offers new possibilities for bioreactor design and optimization of tissue properties towards a tissue-engineered aortic human heart valve replacement.


Circulation | 2006

Autologous Human Tissue-Engineered Heart Valves Prospects for Systemic Application

Anita Mol; Marcel C. M. Rutten; Niels J. B. Driessen; Carlijn Carlijn Bouten; Gregor Zünd; Frank P. T. Baaijens; Simon P. Hoerstrup

Background— Tissue engineering represents a promising approach for the development of living heart valve replacements. In vivo animal studies of tissue-engineered autologous heart valves have focused on pulmonary valve replacements, leaving the challenge to tissue engineer heart valves suitable for systemic application using human cells. Methods and Results— Tissue-engineered human heart valves were analyzed up to 4 weeks and conditioning using bioreactors was compared with static culturing. Tissue formation and mechanical properties increased with time and when using conditioning. Organization of the tissue, in terms of anisotropic properties, increased when conditioning was dynamic in nature. Exposure of the valves to physiological aortic valve flow demonstrated proper opening motion. Closure dynamics were suboptimal, most likely caused by the lower degree of anisotropy when compared with native aortic valve leaflets. Conclusions— This study presents autologous tissue-engineered heart valves based on human saphenous vein cells and a rapid degrading synthetic scaffold. Tissue properties and mechanical behavior might allow for use as living aortic valve replacements.


Circulation | 2006

Functional Growth in Tissue-Engineered Living, Vascular Grafts Follow-Up at 100 Weeks in a Large Animal Model

Simon P. Hoerstrup; Ian Cummings Mrcs; Mario Lachat; Frederick J. Schoen; Rolf Jenni; Sebastian Leschka; Stefan Neuenschwander; Dörthe Schmidt; Anita Mol; Ci Christina Günter; Mathias Gössi; Michele Genoni; Gregor Zünd

Background— Living autologous vascular grafts with the capacity for regeneration and growth may overcome the limitations of contemporary artificial prostheses. Particularly in congenital cardiovascular surgery, there is an unmet medical need for growing replacement materials. Here we investigate growth capacity of tissue-engineered living pulmonary arteries in a growing lamb model. Methods and Results— Vascular grafts fabricated from biodegradable scaffolds (ID 18±l mm) were sequentially seeded with vascular cells. The seeded constructs were grown in vitro for 21days using biomimetic conditions. Thereafter, these tissue-engineered vascular grafts (TEVGs) were surgically implanted as main pulmonary artery replacements in 14 lambs using cardiopulmonary bypass and followed up for ≤100 weeks. The animals more than doubled their body weight during the 2-year period. The TEVG showed good functional performance demonstrated by regular echocardiography at 20, 50, 80, and 100 weeks and computed tomography–angiography. In particular, there was no evidence of thrombus, calcification, stenosis, suture dehiscence, or aneurysm. There was a significant increase in diameter by 30% and length by 45%. Histology showed tissue formation reminiscent of native artery. Biochemical analysis revealed cellularity and proteoglycans and increased collagen contents in all of the groups, analogous to those of native vessels. The mechanical profiles of the TEVG showed stronger but less elastic tissue properties than native pulmonary arteries. Conclusions— This study provides evidence of growth in living, functional pulmonary arteries engineered from vascular cells in a full growth animal model.


Circulation | 2006

Living autologous heart valves engineered from human prenatally harvested progenitors

Dörthe Schmidt; Anita Mol; Christian Breymann; Josef Achermann; Bernhard Odermatt; Matthias Gössi; Stefan Neuenschwander; René Prêtre; Michele Genoni; Gregor Zünd; Simon P. Hoerstrup

Background— Heart valve tissue engineering is a promising strategy to overcome the lack of autologous growing replacements, particularly for the repair of congenital malformations. Here, we present a novel concept using human prenatal progenitor cells as new and exclusive cell source to generate autologous implants ready for use at birth. Methods and Results— Human fetal mesenchymal progenitors were isolated from routinely sampled prenatal chorionic villus specimens and expanded in vitro. A portion was cryopreserved. After phenotyping and genotyping, cells were seeded onto synthetic biodegradable leaflet scaffolds (n=12) and conditioned in a bioreactor. After 21 days, leaflets were endothelialized with umbilical cord blood-derived endothelial progenitor cells and conditioned for additional 7 days. Resulting tissues were analyzed by histology, immunohistochemistry, biochemistry (amounts of extracellular matrix, DNA), mechanical testing, and scanning electron microscopy (SEM) and were compared with native neonatal heart valve leaflets. Fresh and cryopreserved cells showed comparable myofibroblast-like phenotypes. Genotyping confirmed their fetal origin. Neo-tissues exhibited organization, cell phenotypes, extracellular matrix production, and DNA content comparable to their native counterparts. Leaflet surfaces were covered with functional endothelia. SEM showed cellular distribution throughout the polymer and smooth surfaces. Mechanical profiles approximated those of native heart valves. Conclusions— Prenatal fetal progenitors obtained from routine chorionic villus sampling were successfully used as an exclusive, new cell source for the engineering of living heart valve leaflets. This concept may enable autologous replacements with growth potential ready for use at birth. Combined with the use of cell banking technology, this approach may be applied also for postnatal applications.


Expert Review of Medical Devices | 2009

TISSUE ENGINEERING OF HEART VALVES: ADVANCES AND CURRENT CHALLENGES

Anita Mol; Anthal I.P.M. Smits; Carlijn Vc Bouten; Frank P. T. Baaijens

It is estimated that the number of patients requiring heart valve replacement will triple over the next five decades. None of the current replacement valves can fully restore native valve function because they lack growth and remodeling capabilities. Heart valve tissue engineering is a promising technology to overcome these limitations. Various approaches are being employed, either aimed at development of the valve substitute in vitro or at the use of the regenerative potential of the body (in situ) for the tissue culture phase. This review provides an overview of the progress within both the in vitro and in situ tissue engineering approaches for trileaflet heart valve tissue engineering. Current challenges with these approaches are discussed, focusing in particular on the use of synthetic scaffold materials.


Tissue Engineering Part A | 2009

Tailoring Fiber Diameter in Electrospun Poly(ɛ-Caprolactone) Scaffolds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering

Angelique Balguid; Anita Mol; Mieke H. van Marion; Ruud A. Bank; Carlijn Carlijn Bouten; Frank P. T. Baaijens

Despite the attractive features of nanofibrous scaffolds for cell attachment in tissue-engineering (TE) applications, impeded cell ingrowth has been reported in electrospun scaffolds. Previous findings have shown that the scaffold can function as a sieve, keeping cells on the scaffold surface, and that cell migration into the scaffold does not occur in time. Because fiber diameter is directly related to the pore size of an electrospun scaffold, the objective of this study was to systematically evaluate how cell delivery can be optimized by tailoring the fiber diameter of electrospun poly(epsilon-caprolactone) (PCL) scaffolds. Five groups of electrospun PCL scaffolds with increasing average fiber diameters (3.4-12.1 microm) were seeded with human venous myofibroblasts. Cell distribution was analyzed after 3 days of culture. Cell penetration increased proportionally with increasing fiber diameter. Unobstructed delivery of cells was observed exclusively in the scaffold with the largest fiber diameter (12.1 microm). This scaffold was subsequently evaluated in a 4-week TE experiment and compared with a poly(glycolic acid)-poly(4-hydroxybutyrate) scaffold, a standard scaffold used successfully in cardiovascular tissue engineering applications. The PCL constructs showed homogeneous tissue formation and sufficient matrix deposition. In conclusion, fiber diameter is a crucial parameter to allow for homogeneous cell delivery in electrospun scaffolds. The optimal electrospun scaffold geometry, however, is not generic and should be adjusted to cell size.


Circulation | 2007

Prenatally Fabricated Autologous Human Living Heart Valves Based on Amniotic Fluid–Derived Progenitor Cells as Single Cell Source

Dörthe Schmidt; Josef Achermann; Bernhard Odermatt; Christian Breymann; Anita Mol; Michele Genoni; Gregor Zünd; Simon P. Hoerstrup

Background— A novel concept providing prenatally tissue engineered human autologous heart valves based on routinely obtained fetal amniotic fluid progenitors as single cell source is introduced. Methods and Results— Fetal human amniotic progenitors were isolated from routinely sampled amniotic fluid and sorted using CD133 magnetic beads. After expansion and differentiation, cell phenotypes of CD133− and CD133+ cells were analyzed by immunohistochemistry and flowcytometry. After characterization, CD133− derived cells were seeded onto heart valve leaflet scaffolds (n=18) fabricated from rapidly biodegradable polymers, conditioned in a pulse duplicator system, and subsequently coated with CD133+ derived cells. After in vitro maturation, opening and closing behavior of leaflets was investigated. Neo-tissues were analyzed by histology, immunohistochemistry, and scanning electron microscopy (SEM). Extracellular matrix (ECM) elements and cell numbers were quantified biochemically. Mechanical properties were assessed by tensile testing. CD133− derived cells demonstrated characteristics of mesenchymal progenitors expressing CD44 and CD105. Differentiated CD133+ cells showed features of functional endothelial cells by eNOS and CD141 expression. Engineered heart valve leaflets demonstrated endothelialized tissue formation with production of ECM elements (GAG 80%, HYP 5%, cell number 100% of native values). SEM showed intact endothelial surfaces. Opening and closing behavior was sufficient under half of systemic conditions. Conclusions— The use of amniotic fluid as single cell source is a promising low-risk approach enabling the prenatal fabrication of heart valves ready to use at birth. These living replacements with the potential of growth, remodeling, and regeneration may realize the early repair of congenital malformations.


Journal of Biotechnology | 2010

A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks.

Jens M. Kelm; Volker Lorber; Jess G. Snedeker; Dörthe Schmidt; Angela Broggini-Tenzer; Martin Weisstanner; Bernhard Odermatt; Anita Mol; Gregor Zünd; Simon P. Hoerstrup

Current scientific attempts to generate in vitro tissue-engineered living blood vessels (TEBVs) show substantial limitations, thereby preventing routine clinical use. In the present report, we describe a novel biotechnology concept to create living small diameter TEBV based exclusively on microtissue self-assembly (living cellular re-aggregates). A novel bioreactor was designed to assemble microtissues in a vascular shape and apply pulsatile flow and circumferential mechanical stimulation. Microtissues composed of human artery-derived fibroblasts (HAFs) and endothelial cells (HUVECs) were accumulated and cultured for 7 and 14 days under pulsatile flow/mechanical stimulation or static culture conditions with a diameter of 3mm and a wall thickness of 1mm. The resulting vessels were analyzed by immunohistochemistry for extracellular matrix (ECM) and cell phenotype (von Willebrand factor, alpha-SMA, Ki67, VEGF). Self-assembled microtissues composed of fibroblasts displayed significantly accelerated ECM formation compared to monolayer cell sheets. Accumulation of vessel-like tissue occurred within 14 days under both, static and flow/mechanical stimulation conditions. A layered tissue formation was observed only in the dynamic group, as indicated by luminal aligned alpha-SMA positive fibroblasts. We could demonstrate that self-assembled cell-based microtissues can be used to generate small diameter TEBV. The significant enhancement of ECM expression and maturation, together with the pre-vascularization capacity makes this approach highly attractive in terms of generating functional small diameter TEBV devoid of any foreign material.


Tissue Engineering Part A | 2009

Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

Mp Mirjam Rubbens; Anita Mol; Ra Ralf Boerboom; Ruud A. Bank; Frank P. T. Baaijens; Carlijn Carlijn Bouten

Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of which intermittent straining is most promising in terms of tissue properties. We hypothesize that this is due to an improved collagen matrix synthesis, maturation, and organization, triggered by periodic straining of cells. To test this hypothesis, we studied the effect of intermittent versus constrained conditioning with time (2-4 weeks), using a novel model system of human heart valve tissue. Temporal variations in collagen production, cross-link density, and mechanical properties were quantified in engineered heart valve tissue, cyclically strained for 3-h periods, alternated with 3-h periods rest. In addition, an innovative method for vital collagen imaging was used to monitor collagen organization. Intermittent straining resulted in increased collagen production, cross-link densities, collagen organization, and mechanical properties at faster rates, as compared to constrained controls, leading to stronger tissues in shorter culture periods. This is of utmost importance for heart valve tissue engineering, where insufficient mechanical properties are currently the main limiting factor.


Circulation | 2009

Hypoxia induces near-native mechanical properties in engineered heart valve tissue.

Angelique Balguid; Anita Mol; Marijke A. A. van Vlimmeren; Frank P. T. Baaijens; Carlijn Carlijn Bouten

Background— Previous attempts in heart valve tissue engineering (TE) failed to produce autologous valve replacements with native-like mechanical behavior to allow for systemic pressure applications. Because hypoxia and insulin are known to promote protein synthesis by adaptive cellular responses, a physiologically relevant oxygen tension and insulin supplements were applied to the growing heart valve tissues to enhance their mechanical properties. Methods and Results— Scaffolds of rapid-degrading polyglycolic acid meshes coated with poly-4-hydroxybutyrate were seeded with human saphenous vein myofibroblasts. The tissue-engineered constructs were cultured under normal oxygen tension (normoxia) or hypoxia (7% O2) and incubated with or without insulin. Glycosaminoglycan production in the constructs approached that of native values under the influence of hypoxia and under the influence of insulin. Both insulin and hypoxia were associated with enhanced matrix production and improved mechanical properties; however, a synergistic effect was not observed. Although the amount of collagen and cross-links in the engineered tissues was still lower than that in native adult human aortic valves, constructs cultured under hypoxic conditions reached native human aortic valve levels of tissue strength and stiffness after 4 weeks of culturing. Conclusions— These results indicate that oxygen tension may be a key parameter for the achievement of sufficient tissue quality and mechanical integrity in tissue-engineered heart valves. Engineered tissues of such strength, based on rapid-degrading polymers, have not been achieved to date. These findings bring the potential use of tissue-engineered heart valves for systemic applications a step closer and represent an important improvement in heart valve tissue engineering.

Collaboration


Dive into the Anita Mol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank P. T. Baaijens

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Carlijn Carlijn Bouten

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels J. B. Driessen

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelique Balguid

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcel C. M. Rutten

Eindhoven University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge