Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel C. M. Rutten is active.

Publication


Featured researches published by Marcel C. M. Rutten.


Annals of Biomedical Engineering | 2005

Tissue Engineering of Human Heart Valve Leaflets: A Novel Bioreactor for a Strain-Based Conditioning Approach

Anita Mol; Niels J. B. Driessen; Marcel C. M. Rutten; Simon P. Hoerstrup; Carlijn Carlijn Bouten; Frank P. T. Baaijens

Current mechanical conditioning approaches for heart valve tissue engineering concentrate on mimicking the opening and closing behavior of the leaflets, either or not in combination with tissue straining. This study describes a novel approach by mimicking only the diastolic phase of the cardiac cycle, resulting in tissue straining. A novel, yet simplified, bioreactor system was developed for this purpose by applying a dynamic pressure difference over a closed tissue engineered valve, thereby inducing dynamic strains within the leaflets. Besides the use of dynamic strains, the developing leaflet tissues were exposed to prestrain induced by the use of a stented geometry. To demonstrate the feasibility of this strain-based conditioning approach, human heart valve leaflets were engineered and their mechanial behavior evaluated. The actual dynamic strain magnitude in the leaflets over time was estimated using numerical analyses. Preliminary results showed superior tissue formation and non-linear tissue-like mechanical properties in the strained valves when compared to non-loaded tissue strips. In conclusion, the strain-based conditioning approach, using both prestrain and dynamic strains, offers new possibilities for bioreactor design and optimization of tissue properties towards a tissue-engineered aortic human heart valve replacement.


Circulation | 2004

Epicardial stenosis severity does not affect minimal microcirculatory resistance

Wilbert Aarnoudse; William F. Fearon; Ganesh Manoharan; Maartje Geven; Fn Frans van de Vosse; Marcel C. M. Rutten; Bernard De Bruyne; Nico H.J. Pijls

Background—Whether minimal microvascular resistance of the myocardium is affected by the presence of an epicardial stenosis is controversial. Recently, an index of microcirculatory resistance (IMR) was developed that is based on combined measurements of distal coronary pressure and thermodilution-derived mean transit time. In normal coronary arteries, IMR correlates well with true microvascular resistance. However, to be applicable in the case of an epicardial stenosis, IMR should account for collateral flow. We investigated the feasibility of determining IMR in humans and tested the hypothesis that microvascular resistance is independent of epicardial stenosis. Methods and Results—Thirty patients scheduled for percutaneous coronary intervention were studied. The stenosis was stented with a pressure guidewire, and coronary wedge pressure (Pw) was measured during balloon occlusion. After successful stenting, a short compliant balloon with a diameter 1.0 mm smaller than the stent was placed in the stented segment and inflated with increasing pressures, creating a 10%, 50%, and 75% area stenosis. At each of the 3 degrees of stenosis, fractional flow reserve (FFR) and IMR were measured at steady-state maximum hyperemia induced by intravenous adenosine. A total of 90 measurements were performed in 30 patients. When uncorrected for Pw, an apparent increase in microvascular resistance was observed with increasing stenosis severity (IMR=24, 27, and 37 U for the 3 different degrees of stenosis; P<0.001). In contrast, when Pwis appropriately accounted for, microvascular resistance did not change with stenosis severity (IMR=22, 23, and 23 U, respectively; P=0.28). Conclusions—Minimal microvascular resistance does not change with epicardial stenosis severity, and IMR is a specific index of microvascular resistance when collateral flow is properly taken into account.


Circulation | 2006

Autologous Human Tissue-Engineered Heart Valves Prospects for Systemic Application

Anita Mol; Marcel C. M. Rutten; Niels J. B. Driessen; Carlijn Carlijn Bouten; Gregor Zünd; Frank P. T. Baaijens; Simon P. Hoerstrup

Background— Tissue engineering represents a promising approach for the development of living heart valve replacements. In vivo animal studies of tissue-engineered autologous heart valves have focused on pulmonary valve replacements, leaving the challenge to tissue engineer heart valves suitable for systemic application using human cells. Methods and Results— Tissue-engineered human heart valves were analyzed up to 4 weeks and conditioning using bioreactors was compared with static culturing. Tissue formation and mechanical properties increased with time and when using conditioning. Organization of the tissue, in terms of anisotropic properties, increased when conditioning was dynamic in nature. Exposure of the valves to physiological aortic valve flow demonstrated proper opening motion. Closure dynamics were suboptimal, most likely caused by the lower degree of anisotropy when compared with native aortic valve leaflets. Conclusions— This study presents autologous tissue-engineered heart valves based on human saphenous vein cells and a rapid degrading synthetic scaffold. Tissue properties and mechanical behavior might allow for use as living aortic valve replacements.


Catheterization and Cardiovascular Interventions | 2004

Myocardial resistance assessed by guidewire-based pressure-temperature measurement: In vitro validation

Wilbert Aarnoudse; Petra van den Berg; Fn Frans van de Vosse; Maartje Geven; Marcel C. M. Rutten; Mc Mark van Turnhout; William F. Fearon; Bernard De Bruyne; Nico H.J. Pijls

By injecting a few cubic centimeters of saline into the coronary artery and using thermodilution principles, mean transit time (Tmn) of the injectate can be calculated and is inversely proportional to coronary blood flow. Because microvascular resistance equals distal coronary pressure (Pd) divided by myocardial flow, the product Pd · Tmn provides an index of myocardial resistance (IMR). In this in vitro study in a physiologic model of the coronary circulation, we compared IMR to true myocardial resistance (TMR) at different degrees of myocardial resistance and at different degrees of epicardial stenosis. Absolute blood flow was varied from 42 to 203 ml/min and TMR varied from 0.39 to 1.63 dynes · sec/cm5. Inverse mean transit time correlated well to absolute blood flow (R2 = 0.93). Furthermore, an excellent correlation was found between IMR and TMR (R2 = 0.94). IMR was independent on the severity of epicardial stenosis and thus specific for myocardial resistance. Thus, using one single guidewire, both fractional flow reserve and IMR can be measured simultaneously as indexes of epicardial and microvascular disease, respectively, enabling separate assessment of both coronary arterial and microvascular disease. Catheter Cardiovasc Interv 2004; 62:56–63.


International Journal of Artificial Organs | 2011

An Ex Vivo Platform to Simulate Cardiac Physiology: A New Dimension for Therapy Development and Assessment:

Jurgen de Hart; Arend de Weger; Sjoerd van Tuijl; Johannes M. A. Stijnen; Cn Chantal van den Broek; Marcel C. M. Rutten; Bas de Mol

Purpose Cardiac research and development of therapies and devices is being done with in silico models, using computer simulations, in vitro models, for example using pulse duplicators or in vivo models using animal models. These platforms, however, still show essential gaps in the study of comprehensive cardiac mechanics, hemodynamics, and device interaction. The PhysioHeart platform was developed to overcome these gaps by the ability to study cardiac hemodynamic functioning and device interaction ex vivo under in vivo conditions. Methods Slaughterhouse pig hearts (420 ± 30 g) were used for their morphological and physiological similarities to human hearts. Hearts were arrested, isolated and transported similar to transplantation protocols. After preparation, the hearts were connected to a special circulatory system that has been engineered using physical and medical principles. Through coronary reperfusion and controlled cardiac loading, physiological cardiac performance was achieved while hemodynamic parameters were continuously monitored. Results Normal cardiac hemodynamic performance was achieved both qualitatively, in terms of pulse waveforms, and quantitatively, in terms of average cardiac output (4 l/min) and pressures (110/75 mmHg). Cardiac performance was controlled and kept at normal levels for up to 4 hours, with only minor deterioration of hemodynamic performance. Conclusions With the PhysioHeart platform we were able to reproduce normal physiological cardiac conditions ex vivo. The platform enables us to study, under different but controlled physiological conditions, form, function, and device interaction through monitoring of performance parameters and intra-cardiac visualization. Although the platform has been used for pig hearts, application of the underlying physical and engineering principles to physiologically comparable hearts from different origin is rather straightforward.


Journal of Surgical Research | 2011

Continuous-Flow Cardiac Assistance: Effects on Aortic Valve Function in a Mock Loop

Egemen Tuzun; Marcel C. M. Rutten; Marco Dat; Fn Frans van de Vosse; Cihan Kadipasaoglu; Bas de Mol

BACKGROUND As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. MATERIALS AND METHODS To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. RESULTS Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. CONCLUSIONS Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation.


IEEE Transactions on Biomedical Engineering | 2003

Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation

Johannes G. G. Dobbe; Geert J. Streekstra; Jan Strackee; Marcel C. M. Rutten; Johannes M. A. Stijnen; Cornelis A. Grimbergen

Syllectometry is a measuring method that is commonly used to assess red blood cell (RBC) aggregability. In syllectometry, light is incident on a layer of whole blood initially exposed to shear flow. The backscattered light is measured after abruptly stopping the driving mechanism. The resultant time-dependent intensity plot is called the syllectogram. Parameters that quantify RBC aggregability are obtained by analyzing the syllectogram. As we will show in this paper, the upstroke in the initial part of the syllectogram contains the information for measurement of RBC-shape recovery in whole blood as well. To estimate RBC-shape recovery, we extended the existing two-exponential mathematical representation of the syllectogram by a third exponent that describes the upstroke. To investigate the feasibility of RBC-shape recovery measurement from the upstroke, we derived an analytical model of the flow decay that follows after abruptly stopping the driving mechanism. The model reveals that for large gaps the flow decay may interfere with the true RBC-shape recovery process. These theoretical findings were confirmed by velocity measurements in a Couette-type aggregometer. Syllectograms obtained using large gaps differ in many respects from those obtained using small gaps. As predicted by our model large gaps show a prolonged apparent shape-recovery time-constant. Moreover, a delayed intensity peak, a reduced upstroke of the intensity peak and a considerable increase of the half-life parameter are observed. The aggregation indices for large gaps are lower than for small gaps. This paper yields a better understanding of the velocity and shear-rate decay following upon abruptly stopping the driving mechanism. A better mathematical representation of the syllectogram and recommendations for a maximum gap width enables both RBC-shape recovery and aggregation measurements in whole blood using syllectometry.


Asaio Journal | 2013

Pump flow estimation from pressure head and power uptake for the HeartAssist5, HeartMate II and HeartWare VADs

Kim Pennings; Jerson R. Martina; Ben F.M. Rodermans; Jaap R. Lahpor; Fn Frans van de Vosse; Bas A.J.M. de Mol; Marcel C. M. Rutten

The use of long-term mechanical circulatory support (MCS) for heart failure by means of implanted continuous-flow left ventricular assist devices (cf-LVADs) will increase, either to enable recovery or to provide a destination therapy. The effectiveness and user-friendliness of MCS will depend on the development of near-physiologic control strategies for which accurate estimation of pump flow is essential. To provide means for the assessment of pump flow, this study presents pump models, estimating pump flow (Qlvad) from pump speed (n) and pressure difference across the LVAD (&Dgr;plvad) or power uptake (P). The models are evaluated for the axial-flow LVADs HeartAssist5 (HA5) and HeartMate II (HMII), and for a centrifugal pump, the HeartWare (HW). For all three pumps, models estimating Qlvad from &Dgr;plvad only is capable of describing pump behavior under static conditions. For the axial pumps, flow estimation from power uptake alone was not accurate. When assuming an increase in pump flow with increasing power uptake, low pump flows are overestimated in these pumps. Only for the HW, pump flow increased linearly with power uptake, resulting in a power-based pump model that estimates static pump flow accurately. The addition of pressure head measurements improved accuracy in the axial cf-LVAD estimation models.


Artificial Organs | 2013

Exercise hemodynamics during extended continuous flow left ventricular assist device support : the response of systemic cardiovascular parameters and pump performance

Jerson R. Martina; Nicolaas de Jonge; Marcel C. M. Rutten; J. Hans Kirkels; C. Klöpping; Ben F.M. Rodermans; Eveline Sukkel; Nelienke Hulstein; Bas de Mol; Jaap R. Lahpor

Patients on continuous flow left ventricular assist devices (cf-LVADs) are able to return to an active lifestyle and perform all sorts of physical activities. This study aims to evaluate exercise hemodynamics in patients with a HeartMate II cf-LVAD (HM II). Thirty (30) patients underwent a bicycle exercise test. Along with exercise capacity, systemic cardiovascular responses and pump performance were evaluated at 6 and 12 months after HM II implantation. From rest to maximum exercise, heart rate increased from 87 ± 14 to 140 ± 32 beats/minute (bpm) (P<0.01), while systolic arterial blood pressure increased from 93 ± 12 to 116 ± 21 mm Hg (P<0.01). Total cardiac output (TCO) increased from 4.1 ± 1.1 to 8.5 ± 2.8 L/min (P<0.01) while pump flow increased less, from 5.1 ± 0.7 to 6.4 ± 0.6 L/min (P<0.01). Systemic vascular resistance (SVR) decreased from 1776 ± 750 to 1013 ± 83 dynes.s/cm(5) (P<0.001) and showed the strongest correlation with TCO (r= -0.72; P<0.01). Exercise capacity was affected by older age, while blood pressure increased significantly in men compared with women. Exercise capacity remained consistent at 6 and 12 months after HM II implantation, 51% ± 13% and 52% ± 13% of predicted VO2 max for normal subjects corrected for age and gender. In conclusion, pump flow of the HM II may contribute partially to TCO during exercise, while SVR was the strongest determinant of TCO.


Journal of Biomechanics | 2014

Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model

Cristóbal Bertoglio; D C Barber; Nicholas Gaddum; Israel Valverde; Marcel C. M. Rutten; Philipp Beerbaum; Philippe Moireau; Rodney Hose; Jean-Frédéric Gerbeau

We consider the problem of estimating the stiffness of an artery wall using a data assimilation method applied to a 3D fluid-structure interaction (FSI) model. Recalling previous works, we briefly present the FSI model, the data assimilation procedure and the segmentation algorithm. We present then two examples of the procedure using real data. First, we estimate the stiffness distribution of a silicon rubber tube from image data. Second, we present the estimation of aortic wall stiffness from real clinical data.

Collaboration


Dive into the Marcel C. M. Rutten's collaboration.

Top Co-Authors

Avatar

Fn Frans van de Vosse

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard G. P. Lopata

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nico H.J. Pijls

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank P. T. Baaijens

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Niels J. B. Driessen

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anita Mol

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Carlijn Carlijn Bouten

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cn Chantal van den Broek

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathalie Bijnens

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge