Anitha Kumari Sharma
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anitha Kumari Sharma.
Science of The Total Environment | 2014
Ravi Kumar Chhetri; Dines Thornberg; Jesper Berner; Robin Gramstad; Ulrik Öjstedt; Anitha Kumari Sharma; Henrik Rasmus Andersen
We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO.
Journal of Environmental Management | 2015
Luca Vezzaro; Anitha Kumari Sharma; Anna Ledin; Peter Steen Mikkelsen
The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental prerequisite when preparing strategies to reduce stormwater MP discharges to natural waters. Dynamic integrated models can be important tools in this step, as they can be used to integrate the limited data provided by monitoring campaigns and to evaluate the performance of different strategies based on model simulation results. This study presents an example where six different control strategies, including both source-control and end-of-pipe treatment, were compared. The comparison focused on fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene). MP fluxes were estimated by using an integrated dynamic model, in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data, runoff quality was simulated by using a conceptual accumulation/washoff model, and a stormwater retention pond was simulated by using a dynamic treatment model based on MP inherent properties. Uncertainty in the results was estimated with a pseudo-Bayesian method. Despite the great uncertainty in the MP fluxes estimated by the runoff quality model, it was possible to compare the six scenarios in terms of discharged MP fluxes, compliance with water quality criteria, and sediment accumulation. Source-control strategies obtained better results in terms of reduction of MP emissions, but all the simulated strategies failed in fulfilling the criteria based on emission limit values. The results presented in this study shows how the efficiency of MP pollution control strategies can be quantified by combining advanced modeling tools (integrated stormwater quality model, uncertainty calibration).
Environmental Science & Technology | 2013
Heidi Birch; Anitha Kumari Sharma; Luca Vezzaro; Hans-Christian Holten Lützhøft; Peter Steen Mikkelsen
Micropollutant monitoring in stormwater discharges is challenging because of the diversity of sources and thus large number of pollutants found in stormwater. This is further complicated by the dynamics in runoff flows and the large number of discharge points. Most passive samplers are nonideal for sampling such systems because they sample in a time-integrative manner. This paper reports test of a flow-through passive sampler, deployed in stormwater runoff at the outlet of a residential-industrial catchment. Momentum from the water velocity during runoff events created flow through the sampler resulting in velocity dependent sampling. This approach enables the integrative sampling of stormwater runoff during periods of weeks to months while weighting actual runoff events higher than no flow periods. Results were comparable to results from volume-proportional samples and results obtained from using a dynamic stormwater quality model (DSQM). The paper illustrates how velocity-dependent flow-through passive sampling may revolutionize the way stormwater discharges are monitored. It also opens the possibility to monitor a larger range of discharge sites over longer time periods instead of focusing on single sites and single events, and it shows how this may be combined with DSQMs to interpret results and estimate loads over extended time periods.
International Journal of Environmental Science and Technology | 2013
Anitha Kumari Sharma; Dines Thornberg; Henrik Rasmus Andersen
The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing water and commercial iron solution was successful in dissolving the iron from waterworks sludge. The anaerobic dissolution of waterworks sludge due to co-digestion with biological sludge (primary and biological activated sludge) resulted in reduction of iron, increase in dissolved iron(II), increase in pH due to the produced alkalinity from dissolution of iron(III)hydroxides from waterworks sludge, lower internal recirculation of phosphate concentration in the reject water and reduced sulphide in the digested liquid. However, recirculation of the produced soluble iron(II) as an iron source for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant, and are economically and environmentally more favourable compared to deposition of the waterworks sludge in controlled landfills.
Applied Geochemistry | 2014
Anitha Kumari Sharma; Jens Christian Tjell; Jens Jørgen Sloth; Peter E. Holm
Water Science and Technology | 2011
Anitha Kumari Sharma; T Guildal; H. R. Thomsen; B N Jacobsen
12th International Conference on Urban Drainage | 2011
Anitha Kumari Sharma; Luca Vezzaro; Heidi Birch; Karsten Arnbjerg-Nielsen; Peter Steen Mikkelsen
Environmental Geosciences | 2006
Anitha Kumari Sharma; Jens Christian Tjell; Hans Mosbk
Water Science and Technology | 2013
Anitha Kumari Sharma; T Guildal; Ha Thomsen; Peter Steen Mikkelsen; B N Jacobsen
Journal De Physique Iv | 2003
Anitha Kumari Sharma; Jens Christian Tjell; Hans Mosbæk