Anitha Kunhikrishnan
University of South Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anitha Kunhikrishnan.
Journal of Hazardous Materials | 2014
Nanthi Bolan; Anitha Kunhikrishnan; Ramya Thangarajan; Jurate Kumpiene; Jin Hee Park; Tomoyuki Makino; M. B. Kirkham; Kirk G. Scheckel
Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored.
Advances in Agronomy | 2011
Nanthi Bolan; Domy C. Adriano; Anitha Kunhikrishnan; T.K. James; R. W. McDowell; N. Senesi
Abstract Dissolved organic matter (DOM) is defined as the organic matter fraction in solution that passes through a 0.45 μm filter. Although DOM is ubiquitous in terrestrial and aquatic ecosystems, it represents only a small proportion of the total organic matter in soil. However, DOM, being the most mobile and actively cycling organic matter fraction, influences a spectrum of biogeochemical processes in the aquatic and terrestrial environments. Biological fixation of atmospheric CO 2 during photosynthesis by higher plants is the primary driver of global carbon cycle. A major portion of the carbon in organic matter in the aquatic environment is derived from the transport of carbon produced in the terrestrial environment. However, much of the terrestrially produced DOM is consumed by microbes, photo degraded, or adsorbed in soils and sediments as it passes to the ocean. The majority of DOM in terrestrial and aquatic environments is ultimately returned to atmosphere as CO 2 through microbial respiration, thereby renewing the atmospheric CO 2 reserve for photosynthesis. Dissolved organic matter plays a significant role in influencing the dynamics and interactions of nutrients and contaminants in soils and microbial functions, thereby serving as a sensitive indicator of shifts in ecological processes. This chapter aims to highlight knowledge on the production of DOM in soils under different management regimes, identify its sources and sinks, and integrate its dynamics with various soil processes. Understanding the significance of DOM in soil processes can enhance development of strategies to mitigate DOM-induced environmental impacts. This review encourages greater interactions between terrestrial and aquatic biogeochemists and ecologists, which is essential for unraveling the fundamental biogeochemical processes involved in the synthesis of DOM in terrestrial ecosystem, its subsequent transport to aquatic ecosystem, and its role in environmental sustainability, buffering of nutrients and pollutants (metal(loid)s and organics), and the net effect on the global carbon cycle.
Science of The Total Environment | 2013
Ramya Thangarajan; Nanthi Bolan; Guanglong Tian; Ravi Naidu; Anitha Kunhikrishnan
Globally, substantial quantities of organic amendments (OAs) such as plant residues (3.8×10(9) Mg/yr), biosolids (10×10(7) Mg/yr), and animal manures (7×10(9) Mg/yr) are produced. Recycling these OAs in agriculture possesses several advantages such as improving plant growth, yield, soil carbon content, and microbial biomass and activity. Nevertheless, OA applications hold some disadvantages such as nutrient eutrophication and greenhouse gas (GHG) emission. Agriculture sector plays a vital role in GHG emission (carbon dioxide- CO2, methane- CH4, and nitrous oxide- N2O). Though CH4 and N2O are emitted in less quantity than CO2, they are 21 and 310 times more powerful in global warming potential, respectively. Although there have been reviews on the role of mineral fertilizer application on GHG emission, there has been no comprehensive review on the effect of OA application on GHG emission in agricultural soils. The review starts with the quantification of various OAs used in agriculture that include manures, biosolids, and crop residues along with their role in improving soil health. Then, it discusses four major OA induced-GHG emission processes (i.e., priming effect, methanogenesis, nitrification, and denitrification) by highlighting the impact of OA application on GHG emission from soil. For example, globally 10×10(7) Mg biosolids are produced annually which can result in the potential emission of 530 Gg of CH4 and 60 Gg of N2O. The article then aims to highlight the soil, climatic, and OA factors affecting OA induced-GHG emission and the management practices to mitigate the emission. This review emphasizes the future research needs in relation to nitrogen and carbon dynamics in soil to broaden the use of OAs in agriculture to maintain soil health with minimum impact on GHG emission from agriculture.
Science of The Total Environment | 2012
Nanthi Bolan; Anitha Kunhikrishnan; Girish Choppala; Ramya Thangarajan; Jae Woo Chung
There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil.
Science of The Total Environment | 2013
Nanthi Bolan; Santiago Mahimairaja; Anitha Kunhikrishnan; Girish Choppala
Phosphorus (P) influences arsenic (As) mobility and bioavailability which depends on the charge components of soil. The objective of this study was to examine P-As interaction in variable-charge allophanic soils in relation to P-induced As mobilization and bioavailability. In this work, the effect of P on arsenate [As(V)] adsorption and desorption was examined using a number of allophanic and non-allophanic soils which vary in their anion adsorption capacity. The effect of P on As uptake by Indian mustard (Brassica juncea L.) plants was examined using a solution culture, and a soil plant growth experiment involving two As-spiked allophanic and non-allophanic soils which vary in their anion adsorption capacity, and a field As-contaminated sheep dip soil. Arsenate adsorption increased with an increase in the anion adsorption capacity of soils. The addition of P resulted in an increase in As desorption, and the effect was more pronounced in the case of allophanic soil. In the case of both As-spiked soils and field contaminated sheep-dip soil, application of P increased the desorption of As, thereby increasing its bioavailability. The effect of P on As uptake was more pronounced in the high anion adsorbing allophanic than low adsorbing non-allophanic soil. In the case of solution culture, As phytoavailability decreased with increasing concentration of P which is attributed to the competition of P for As uptake by roots. While increasing P concentration in solution decreased the uptake of As, it facilitated the translocation of As from root to shoot. The net effect of P on As phytoavailability in soils depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The P-induced mobilization of As could be employed in the phytoremediation of As-contaminated sites. However, care must be taken to minimize the leaching of As mobilized through the P-induced desorption, thereby resulting in groundwater and off site contamination.
Science of The Total Environment | 2013
Jagrati Singh; Anitha Kunhikrishnan; Nanthi Bolan; S. Saggar
New Zealands intensively grazed pastures receive the majority of nitrogen (N) input in the form of urea, which is the major constituent of animal urine and the most common form of mineral N in inorganic N fertilizers. In soil, urea is rapidly hydrolyzed to ammonium (NH4(+)) ions, a part of which may be lost as ammonia (NH3) and subsequently as nitrous oxide (N2O), which is a greenhouse gas. Two glasshouse experiments were conducted to study the effect of a urease inhibitor (UI), N-(n-butyl) thiophosphoric triamide (NBPT), commercially named Agrotain, applied with urine and urea on urea hydrolysis and NH3 and N2O emissions. Treatments included the commercially available products Sustain Yellow (urea+Agrotain+4% sulfur coating), Sustain Green (urea+Agrotain) and urea, and cattle urine (476 kg N ha(-1)) with and without Agrotain applied to intact soil cores of a fine sandy loam soil. The addition of Agrotain to urine and urea (i.e. Sustain Green) reduced NH3 emission by 22% to 47%, respectively. Agrotain was also effective in reducing N2O emissions from urine and Sustain Green by 62% and 48%, respectively. The reduction in N2O emissions varied with the type and amount of N applied and plant N uptake. Plant N uptake was significantly higher in the soil cores receiving Agrotain with urea than urea alone, but the slight increase in dry matter yield was non-significant. Hence, urease inhibitor reduced N losses through NH3 and N2O emissions, thereby increasing plant uptake of N.
Critical Reviews in Environmental Science and Technology | 2016
Muhammad Bilal Shakoor; Nabeel Khan Niazi; Irshad Bibi; Ghulam Murtaza; Anitha Kunhikrishnan; Balaji Seshadri; Muhammad Shahid; Shafaqat Ali; Nanthi Bolan; Yong Sik Ok; Muhammad Abid; Fawad Ali
ABSTRACT Arsenic (As) contamination of groundwater reservoirs is a global environmental and health issue given to its toxic and carcinogenic nature. Over 170 million people have been affected by As due to the ingestion of As-contaminated groundwater. Conventional methods such as reverse osmosis, ion exchange, and electrodialysis are commonly used for the remediation of As-contaminated water; however, the high cost and sludge production put limitations on their application to remove As from water. This review critically addresses the use of various agricultural waste materials (e.g., sugarcane bagasse, peels of various fruits, wheat straw) as biosorbents, thereby offering an eco-friendly and low-cost solution for the removal of As from contaminated water supplies. The effect of solution chemistry such as solution pH, cations, anions, organic ligands, and various other factors (e.g., temperature, contact time, sorbent dose) on As biosorption, and safe disposal methods for As-loaded biosorbents to reduce secondary As contamination are also discussed.
Advances in Agronomy | 2013
Nanthi Bolan; Tomoyuki Makino; Anitha Kunhikrishnan; Pil-Joo Kim; Satoru Ishikawa; Masaharu Murakami; Ravi Naidu; M. B. Kirkham
Cadmium (Cd) has been identified as one of the major heavy metals reaching the food chain through various geogenic and anthropogenic activities. In many East and South Asian countries including Japan, Bangladesh, Indonesia, and Korea, Cd accumulation in rice (Oryza sativa L.) ecosystems and its subsequent transfer to the human food chain is a major environmental issue. Rice soils in these countries have been affected by Cd accumulation derived from fertilizer and manure application, mine tailings, and refining plants. Excessive intake of Cd into the human body is detrimental to human health, causing serious illnesses such as itai-itai disease. To ensure the safety of foods, the concentrations of Cd in staple crops should be below a standard value; this applies particularly to rice because 34–50% of the Cd intake by people in many Asian countries has been derived from rice. Therefore, development of remediation methods for Cd-contaminated rice soils has become an urgent task to ensure food safety. This chapter provides an overview of the various sources of Cd in rice ecosystems and the biogeochemical processes that regulate Cd bioavailability to organisms, including microbes, plants, animals, and humans. Because of the complexity involved in dealing with Cd in rice ecosystems, exacerbated by the Cd source, site characteristics, and the nature of water management strategies, we have attempted to describe an “integrated” approach that employs a combination of remediation technologies, with the aim of securing methods that are economically and technologically viable.
Advances in Agronomy | 2012
Anitha Kunhikrishnan; Nanthi Bolan; Karin Müller; Seth Laurenson; Ravi Naidu; Won-Il Kim
Abstract With pressure increasing on potable water supplies worldwide, interest in using alternative water supplies including recycled wastewater for irrigation purposes is growing. Wastewater is derived from a number of sources including domestic sewage effluent or municipal wastewater, agricultural (farm effluents) and industrial effluents, and stormwater. Although wastewater irrigation has many positive effects like reliable water supply to farmers, better crop yield, pollution reduction of rivers, and other surface water resources, there are problems associated with it such as health risks to irrigators, build-up of chemical pollutants (e.g., heavy metal(loid)s and pesticides) in soils and contamination of groundwater. Since the environment comprises soil, plants, and soil organisms, wastewater use is directly associated with environmental quality due to its immediate contact with the soil–plant system and consequently can impact on it. For example, the presence of organic matter in wastewater-irrigated sites significantly affects the mobility and bioavailability of heavy metal(loid)s in the soil. Wastewater irrigation can also act as a source of heavy metal(loid) input to soils. In this chapter, first, the various sources of wastewater irrigation and heavy metal(loid) input to soil are identified; second, the effect of wastewater irrigation on soil properties affecting heavy metal(loid) interactions is described; and third and finally, the role of wastewater irrigation on heavy metal(loid) dynamics including adsorption and complexation, redox reactions, transport, and bioavailability is described in relation to strategies designed to mitigate wastewater-induced environmental impacts.
Critical Reviews in Environmental Science and Technology | 2015
Anitha Kunhikrishnan; Ho Kyong Shon; Nanthi Bolan; Ibrahim El Saliby; S. Vigneswaran
Engineered nanomaterials (ENM) are manufactured, as opposed to being an incidental by-product of combustion or a natural process, and they often have unique or novel properties that emerge from their small size. These materials are being used in an expanding array of consumer products and, like all technological developments, have both benefits and risks. As the use of ENM in consumer products becomes more common, the amount of these nanomaterials entering wastewater stream increases. Estimates of nanomaterials production are in the range of 500 and 50,000 tons per year for silver and titanium dioxide (TiO2) alone, respectively. Nanomaterials enter the wastewater stream during the production, usage, and disposal of nanomaterial-containing products. The predicted values of nanomaterials range from 0.003 (fullerenes) to 21 ng L−1 (nano-TiO2) for surface waters, and from 4 ng L−1 (fullerenes) to 4 μg L−1 (nano-TiO2) for sewage treatment effluents. Therefore, investigating the fate of nanomaterials in wastewater streams is critical for risk assessment and pollution control. The authors aim first to identify the sources of nanomaterials reaching wastewater streams, then determine their occurrence and distribution, and finally discuss their fate in relation to human and ecological health, and environmental impact.