Anja Burkhardt
University of Jena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja Burkhardt.
Inorganic Chemistry | 2008
Anja Burkhardt; Eike T. Spielberg; Helmar Görls; Winfried Plass
The sugar-modified Schiff base ligand benzyl 2-deoxy-2-salicylideneamino-alpha-D-glucopyranoside H 2L, prepared by condensation of salicylaldehyde and the monomeric chitosan analogue benzyl 2-deoxy-2-amino-alpha-D-glucopyranoside, reacts with copper(II) acetate to form a self-assembled, alkoxo-bridged tetranuclear homoleptic copper(II) complex [{Cu(L)}4] (4) with Cu4O4 heterocubane core. The chiral complex 4 crystallizes in the space group P2 12 12 1. The tetranuclear complex 4 is composed of two dinuclear {Cu(L)}2 entities linked by the four mu 3-bridging C-3 alkoxide oxygen atoms of the sugar backbone. The preorganization of the dimeric {Cu(L)}2 entities is enforced by strong hydrogen bonds between the phenolate oxygen atom and the C-4 hydroxy group of the two constituting chiral monomeric building blocks. Therefore the Cu4O4 core can be classified as a type I or 2 + 4 cubane. The chirality of the structure is confirmed by circular dichroism (CD) spectra, which reveal a significant dichroism associated with the copper centered transitions at around 600 nm. Temperature dependent magnetic susceptibility measurements indicate ferromagnetic exchange interactions in complex 4. Fitting of the experimental data with a two J model based on the 2 + 4 topology ( H = - J1(S1S3 + S2S4) - J2(S1 + S3)(S2 + S4)) leads to exchange coupling constants of J1 = 64 and J2 = 4 cm(-1). The observed ferromagnetic coupling can be attributed to the very small Cu-O-Cu bridging angles within the Cu2O2 core of the constituting dimeric entities, which are a result of the conformational requirements introduced by the sugar backbone. 4 is not only the first example of an alkoxo-bridged tetranuclear copper(II) complex with Cu4O4 core representing the 2 + 4 cubane class with ferromagnetic ground state but also a rare example for the class of molecules combining a ferromagnetic ground state with optical activity. The ferromagnetic S = 2 ground state of 4 is confirmed by magnetization measurements and ESR spectroscopy.
Chemistry: A European Journal | 2009
Anja Burkhardt; Eike T. Spielberg; Sascha Simon; Helmar Görls; Axel Buchholz; Winfried Plass
The reaction of benzyl 2-amino-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside (HL) with the metal salts Cu(ClO(4))(2)6 H(2)O and Ni(NO(3))(2)6 H(2)O affords via self-assembly a tetranuclear mu(4)-hydroxido bridged copper(II) complex [(mu(4)-OH)Cu(4)(L)(4)(MeOH)(3)(H(2)O)](ClO(4))(3) (1) and a trinuclear alcoholate bridged nickel(II) complex [Ni(3)(L)(5)(HL)]NO(3) (2), respectively. Both complexes crystallize in the acentric space group P2(1). The X-ray crystal structure reveals the rare (mu(4)-OH)Cu(4)O(4) core for complex 1 which is mu(2)-alcoholate bridged. The copper(II) ions possess a distorted square-pyramidal geometry with an [NO(4)] donor set. The core is stabilized by hydrogen bonding between the coordinating amino group of the glucose backbone and the benzylidene protected oxygen atom O4 of a neighboring {Cu(L)} fragment as hydrogen-bond acceptor. For complex 2 an [N(4)O(2)] donor set is observed at the nickel(II) ions with a distorted octahedral geometry. The trinuclear isosceles Ni(3) core is bridged by mu(3)-alcoholate O3 oxygen atoms of two glucose ligands. The two short edges are capped by mu(2)-alcoholate O3 oxygen atoms of the two ligands coordinated at the nickel(II) ion at the vertex of these two edges. Along the elongated edge of the triangle a strong hydrogen bond (244 pm) between the O3 oxygen atoms of ligands coordinating at the two relevant nickel(II) ions is observed. The coordinating amino groups of the these two glucose ligands are involved in additional hydrogen bonds with O4 oxygen atoms of adjacent ligands further stabilizing the trinuclear core. The carbohydrate backbones in all cases adopt the stable (4)C(1) chair conformation and exhibit the rare chitosan-like trans-2,3-chelation. Temperature dependent magnetic measurements indicate an overall antiferromagnetic behavior for complex 1 with J(1)=-260 and J(2)=-205 cm(-1) (g=2.122). Compound 2 is the first ferromagnetically coupled trinuclear nickel(II) complex with J(A)=16.4 and J(B)=11.0 cm(-1) (g(1,2)=2.183, g(3)=2.247). For the high-spin nickel(II) centers a zero-field splitting of D(1,2)=3.7 cm(-1) and D(3)=1.8 cm(-1) is observed. The S=3 ground state of complex 2 is consistent with magnetization measurements at low temperatures.
Carbohydrate Research | 2008
Anja Burkhardt; Helmar Görls; Winfried Plass
Two mononuclear nickel(II) complexes with Schiff-base ligands derived from the epimeric sugars glucosamine and mannosamine have been synthesized. The X-ray crystal structure reveals a distorted octahedral geometry at the nickel(II) ions with an N4O2 donor set and the rare 2,3-chelation of the donor atoms of the carbohydrate backbone. Upon complexation only the glucopyranose ring maintains the 4C1 chair conformation, whereas the mannopyranose ring adopts the OS5 screw-boat conformation. Dimeric units of complex cations are formed by intermolecular hydrogen bonding which are further assembled by pi-stacking affording one-dimensional chains with a twofold screw symmetry.
Dalton Transactions | 2013
Gholamhossein Mohammadnezhad; Michael Böhme; Daniel Geibig; Anja Burkhardt; Helmar Görls; Winfried Plass
The sugar-modified Schiff-base ligands derived from benzyl 2-deoxy-2-salicylideneamino-α-D-glucopyranoside (H2L(5-Br) and H2L(3-OMe)) were used to prepare the chiral oxidovanadium(V) complexes [VO(L(5-Br))(OMe)] (1) and [VO(L(3-OMe))(OMe)] (2) which can be isolated from a methanol solution as the six-coordinate complexes with an additional methanol ligand [VO(L(5-Br))(OMe)(MeOH)] (1-MeOH) and [VO(L(3-OMe))(OMe) (MeOH)] (2-MeOH). Both complexes crystallize in the orthorhombic space group P2(1)2(1)2(1) together with two solvent molecules of methanol as 1-MeOH·2MeOH and 1-MeOH·2MeOH. In both crystal structures, only diastereomers with A configuration at the chiral vanadium centre (OC-6-24-A) are observed which corresponds to an cis configuration of the oxido group at the vanadium centre and the benzyl group at the anomeric carbon of the sugar backbone. Upon recrystallization of 2-MeOH from chloroform, the five-coordinate complex 2 was obtained which crystallizes in the monoclinic space group P2(1) with one co-crystallized chloroform molecule (2·CHCl3). For the chiral vanadium centre in 2·CHCl3, a C configuration (SPY-5-43-C) is observed which corresponds to an trans structure as far as the orientations of the oxido and benzyl groups are concerned. (1)H and (51)V NMR spectra of 1 and 2 indicate the presence of two diastereomers in solution. Their absolute configurations can be assigned based on the magnetic anisotropy effect of the oxidovanadium group. This effect leads to significant differences for the (1)H NMR chemical shifts of the H-2 (1.1 ppm) and H-3 protons (0.3 ppm) of the glucose backbone of the two diastereomers, with the downfield shift observed for the H-2 proton of the C-configured and the H-3 proton of the A-configured diastereomer at the vanadium centre. For 1 and 2 the difference between the (51)V NMR chemical shifts of the two diastereomers is 30 and 28 ppm, respectively. Also in the (13)C NMR significant chemical shift differences between the two diastereomers are observed for the carbon atoms C2 (2 ppm) and C3 (4 ppm). DFT calculations of the NMR chemical shift parameters have been performed which are in good agreement with the experimental data. Moreover, the isomerization mechanism between the diastereomers is analysed on the basis of DFT calculations which indicate the required presence of methanol molecules as protic donors.
Acta Crystallographica Section E-structure Reports Online | 2009
Anja Burkhardt; Lars Eriksson; Göran Widmalm; Ian Cumpstey
The title compound, C19H25NO6, is a Z diastereomer in which the phenyl ring of the 3-benzyloxime substituent and the 5,6-O-isopropylidene acetal are both located on the Si-face of the C=N double bond. Intermolecular C—H⋯O interactions result in helical chains along the b axis of the monoclinic unit cell.
Acta Crystallographica Section E-structure Reports Online | 2007
Anja Burkhardt; Axel Buchholz; Helmar Görls; Winfried Plass
Formylphenyl-functionalized sugars are known as components in glycoconjugated porphyrins or chlorins, which are applied as tumor-localizing photosensitizers in photodynamic therapy (Hirohara et al., 2005; Sol et al., 1999; Driaf et al., 1996; Kohata et al., 1994) or as catalysts for cyclohexane oxidation (Zhang et al., 2000). As part of our efforts to utilize sugar-derived Schiff base ligands in the coordination chemistry of transition metals as precursors for chiral catalysts (Becher et al., 2006; Burkhardt et al., 2006; Roth et al., 2006), the title compound, (I), has been synthesized.
Inorganic Chemistry Communications | 2008
Anja Burkhardt; Winfried Plass
European Journal of Inorganic Chemistry | 2006
Anja Burkhardt; Axel Buchholz; Helmar Görls; Winfried Plass
Acta Crystallographica Section E: Crystallographic Communications | 2007
Anja Burkhardt; Axel Buchholz; Helmar Görls; Winfried Plass
Zeitschrift für anorganische und allgemeine Chemie | 2013
Anja Burkhardt; Axel Buchholz; Helmar Görls; Winfried Plass