Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Fuchs is active.

Publication


Featured researches published by Anja Fuchs.


Nature | 2009

A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity

Marina Cella; Anja Fuchs; William Vermi; Fabio Facchetti; Karel Otero; Jochen K. Lennerz; Jason M. Doherty; Jason C. Mills; Marco Colonna

Natural killer (NK) cells are classically viewed as lymphocytes that provide innate surveillance against virally infected cells and tumour cells through the release of cytolytic mediators and interferon (IFN)-γ. In humans, blood CD56dim NK cells specialize in the lysis of cell targets. In the lymph nodes, CD56bright NK cells secrete IFN-γ cooperating with dendritic cells and T cells in the generation of adaptive responses. Here we report the characterization of a human NK cell subset located in mucosa-associated lymphoid tissues, such as tonsils and Peyer’s patches, which is hard-wired to secrete interleukin (IL)-22, IL-26 and leukaemia inhibitory factor. These NK cells, which we refer to as NK-22 cells, are triggered by acute exposure to IL-23. In vitro, NK-22-secreted cytokines stimulate epithelial cells to secrete IL-10, proliferate and express a variety of mitogenic and anti-apoptotic molecules. NK-22 cells are also found in mouse mucosa-associated lymphoid tissues and appear in the small intestine lamina propria during bacterial infection, suggesting that NK-22 cells provide an innate source of IL-22 that may help constrain inflammation and protect mucosal sites.


Nature Immunology | 2015

Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets

Michelle L. Robinette; Anja Fuchs; Victor S. Cortez; Jacob S Lee; Yaming Wang; Scott K. Durum; Susan Gilfillan; Marco Colonna

The recognized diversity of innate lymphoid cells (ILCs) is rapidly expanding. Three ILC classes have emerged, ILC1, ILC2 and ILC3, with ILC1 and ILC3 including several subsets. The classification of some subsets is unclear, and it remains controversial whether natural killer (NK) cells and ILC1 cells are distinct cell types. To address these issues, we analyzed gene expression in ILCs and NK cells from mouse small intestine, spleen and liver, as part of the Immunological Genome Project. The results showed unique gene-expression patterns for some ILCs and overlapping patterns for ILC1 cells and NK cells, whereas other ILC subsets remained indistinguishable. We identified a transcriptional program shared by small intestine ILCs and a core ILC signature. We revealed and discuss transcripts that suggest previously unknown functions and developmental paths for ILCs.


Journal of Immunology | 2004

Cutting Edge: CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155)

Anja Fuchs; Marina Cella; Emanuele Giurisato; Andrey S. Shaw; Marco Colonna

The poliovirus receptor (PVR) belongs to a large family of Ig molecules called nectins and nectin-like proteins, which mediate cell-cell adhesion, cell migration, and serve as entry receptors for viruses. It has been recently shown that human NK cells recognize PVR through the receptor DNAM-1, which triggers NK cell stimulation in association with β2 integrin. In this study, we show that NK cells recognize PVR through an additional receptor, CD96, or T cell-activated increased late expression (Tactile). CD96 promotes NK cell adhesion to target cells expressing PVR, stimulates cytotoxicity of activated NK cells, and mediates acquisition of PVR from target cells. Thus, NK cells have evolved a dual receptor system that recognizes nectins and nectin-like molecules on target cells and mediates NK cell adhesion and triggering of effector functions. As PVR is highly expressed in certain tumors, this receptor system may be critical for NK cell recognition of tumors.


Nature Immunology | 2010

Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells

John Cardone; Gaelle Le Friec; Pierre Vantourout; Andrew W. Roberts; Anja Fuchs; Ian Jackson; Tesha Suddason; Graham M. Lord; John P. Atkinson; Andrew P. Cope; Adrian Hayday; Claudia Kemper

In this study we demonstrate a new form of immunoregulation: engagement on CD4+ T cells of the complement regulator CD46 promoted the effector potential of T helper type 1 cells (TH1 cells), but as interleukin 2 (IL-2) accumulated, it switched cells toward a regulatory phenotype, attenuating IL-2 production via the transcriptional regulator ICER/CREM and upregulating IL-10 after interaction of the CD46 tail with the serine-threonine kinase SPAK. Activated CD4+ T cells produced CD46 ligands, and blocking CD46 inhibited IL-10 production. Furthermore, CD4+ T cells in rheumatoid arthritis failed to switch, consequently producing excessive interferon-γ (IFN-γ). Finally, γδ T cells, which rarely produce IL-10, expressed an alternative CD46 isoform and were unable to switch. Nonetheless, coengagement of T cell antigen receptor (TCR) γδ and CD46 suppressed effector cytokine production, establishing that CD46 uses distinct mechanisms to regulate different T cell subsets during an immune response.


Journal of Experimental Medicine | 2010

Antagonism of the complement component C4 by flavivirus nonstructural protein NS1

Panisadee Avirutnan; Anja Fuchs; Richard E. Hauhart; Pawit Somnuke; Soonjeon Youn; Michael S. Diamond; John P. Atkinson

The complement system plays an essential protective role in the initial defense against many microorganisms. Flavivirus NS1 is a secreted nonstructural glycoprotein that accumulates in blood, is displayed on the surface of infected cells, and has been hypothesized to have immune evasion functions. Herein, we demonstrate that dengue virus (DENV), West Nile virus (WNV), and yellow fever virus (YFV) NS1 attenuate classical and lectin pathway activation by directly interacting with C4. Binding of NS1 to C4 reduced C4b deposition and C3 convertase (C4b2a) activity. Although NS1 bound C4b, it lacked intrinsic cofactor activity to degrade C4b, and did not block C3 convertase formation or accelerate decay of the C3 and C5 convertases. Instead, NS1 enhanced C4 cleavage by recruiting and activating the complement-specific protease C1s. By binding C1s and C4 in a complex, NS1 promotes efficient degradation of C4 to C4b. Through this mechanism, NS1 protects DENV from complement-dependent neutralization in solution. These studies define a novel immune evasion mechanism for restricting complement control of microbial infection.


Gastroenterology | 2013

Association Between Specific Adipose Tissue CD4+ T-Cell Populations and Insulin Resistance in Obese Individuals

Elisa Fabbrini; Marina Cella; Steve A. Mccartney; Anja Fuchs; Nada A. Abumrad; Terri Pietka; Zhouji Chen; Brian N. Finck; Dong Ho Han; Faidon Magkos; Caterina Conte; David Bradley; Gemma Fraterrigo; J. Christopher Eagon; Bruce W. Patterson; Marco Colonna; Samuel Klein

BACKGROUND & AIMS An increased number of macrophages in adipose tissue is associated with insulin resistance and metabolic dysfunction in obese people. However, little is known about other immune cells in adipose tissue from obese people, and whether they contribute to insulin resistance. We investigated the characteristics of T cells in adipose tissue from metabolically abnormal insulin-resistant obese (MAO) subjects, metabolically normal insulin-sensitive obese (MNO) subjects, and lean subjects. Insulin sensitivity was determined by using the hyperinsulinemic euglycemic clamp procedure. METHODS We assessed plasma cytokine concentrations and subcutaneous adipose tissue CD4(+) T-cell populations in 9 lean, 12 MNO, and 13 MAO subjects. Skeletal muscle and liver samples were collected from 19 additional obese patients undergoing bariatric surgery to determine the presence of selected cytokine receptors. RESULTS Adipose tissue from MAO subjects had 3- to 10-fold increases in numbers of CD4(+) T cells that produce interleukin (IL)-22 and IL-17 (a T-helper [Th] 17 and Th22 phenotype) compared with MNO and lean subjects. MAO subjects also had increased plasma concentrations of IL-22 and IL-6. Receptors for IL-17 and IL-22 were expressed in human liver and skeletal muscle samples. IL-17 and IL-22 inhibited uptake of glucose in skeletal muscle isolated from rats and reduced insulin sensitivity in cultured human hepatocytes. CONCLUSIONS Adipose tissue from MAO individuals contains increased numbers of Th17 and Th22 cells, which produce cytokines that cause metabolic dysfunction in liver and muscle in vitro. Additional studies are needed to determine whether these alterations in adipose tissue T cells contribute to the pathogenesis of insulin resistance in obese people.


Journal of Immunology | 2014

Cutting Edge: Salivary Gland NK Cells Develop Independently of Nfil3 in Steady-State

Victor S. Cortez; Anja Fuchs; Marina Cella; Susan Gilfillan; Marco Colonna

Nfil3 is viewed as an obligate transcription factor for NK cell development. However, mouse CMV (MCMV) infection recently was shown to bypass the requirement for Nfil3 by inducing the appearance of NK cells that express the MCMV-specific receptor Ly49H. Thus, signals transmitted by Ly49H and proinflammatory cytokines are sufficient to promote NK cell differentiation in the absence of Nfil3. In this study, we report that salivary gland (SG) NK cells develop in an Nfil3-independent fashion in the steady-state in the absence of MCMV or any infection. Moreover, we show that SG NK cells have an integrin profile reminiscent of tissue-resident lymphocytes and express TRAIL for killing target cells. These results demonstrate that SG NK cells, although related to conventional NK cells, are a distinct subset of innate lymphoid cells that deviates from the conventional developmental pathway, perhaps under the influence of tissue-specific factors.


Journal of Virology | 2009

The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis

Kristy J. Szretter; Melanie A. Samuel; Susan Gilfillan; Anja Fuchs; Marco Colonna; Michael S. Diamond

ABSTRACT Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM−/− mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM−/− mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-α), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice

Huafang Lai; Michael Engle; Anja Fuchs; Thomas Keller; Syd Johnson; Sergey Gorlatov; Michael S. Diamond; Qiang Chen

Over the past decade, West Nile virus (WNV) has spread to all 48 of the lower United States as well as to parts of Canada, Mexico, the Caribbean, and South America, with outbreaks of neuroinvasive disease occurring annually. At present, no therapeutic or vaccine is available for human use. Epidemics of WNV and other emerging infectious disease threats demand cost-efficient and scalable production technologies that can rapidly transfer effective therapeutics into the clinical setting. We have previously reported that Hu-E16, a humanized anti-WNV mAb, binds to a highly conserved epitope on the envelope protein, blocks viral fusion, and shows promising postexposure therapeutic activity. Herein, we generated a plant-derived Hu-E16 mAb that can be rapidly scaled up for commercial production. Plant Hu-E16 was expressed at high levels within 8 days of infiltration in Nicotiana benthamiana plants and retained high-affinity binding and potent neutralizing activity in vitro against WNV. A single dose of plant Hu-E16 protected mice against WNV-induced mortality even 4 days after infection at rates that were indistinguishable from mammalian-cell-produced Hu-E16. This study demonstrates the efficacy of a plant-produced mAb against a potentially lethal infection several days after exposure in an animal challenge model and provides a proof of principle for the development of plant-derived mAbs as therapy against emerging infectious diseases.


European Journal of Immunology | 2009

A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC

Kent S. Boles; William Vermi; Fabio Facchetti; Anja Fuchs; Timothy J. Wilson; Thomas G. Diacovo; Marina Cella; Marco Colonna

Nectins and Nectin‐like molecules (Necl) play a critical role in cell polarity within epithelia and in the nervous and reproductive systems. Recently, immune receptors specific for Nectins/Necl have been described. Since the expression and distribution of Nectins/Necl is often subverted during tumorigenesis, it has been suggested that the immune system may use these receptors to recognize and eliminate tumors. Here we describe a novel immunoreceptor, Washington University Cell Adhesion Molecule, which is expressed on human follicular B helper T cells (TFH) and binds a Nectin/Necl family member, the poliovirus receptor (PVR), under both static and flow conditions. Furthermore, we demonstrate that PVR is abundantly expressed by follicular DC (FDC) within the germinal center. These results reveal a novel molecular interaction that mediates adhesion of TFH to FDC and provide the first evidence that immune receptors for Nectins/Necl may be involved the generation of T cell‐dependent antibody responses.

Collaboration


Dive into the Anja Fuchs's collaboration.

Top Co-Authors

Avatar

Marco Colonna

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Marina Cella

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent S. Boles

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Atkinson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Susan Gilfillan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Carey Strader

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge