Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Diamond is active.

Publication


Featured researches published by Michael S. Diamond.


Nature Immunology | 2012

IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia

Yaming Wang; Kristy J. Szretter; William Vermi; Susan Gilfillan; Cristina Rossini; Marina Cella; Alexander D. Barrow; Michael S. Diamond; Marco Colonna

The differentiation of bone marrow–derived progenitor cells into monocytes, tissue macrophages and some dendritic cell (DC) subtypes requires the growth factor CSF1 and its receptor, CSF1R. Langerhans cells (LCs) and microglia develop from embryonic myeloid precursor cells that populate the epidermis and central nervous system (CNS) before birth. Notably, LCs and microglia are present in CSF1-deficient mice but absent from CSF1R-deficient mice. Here we investigated whether an alternative CSF1R ligand, interleukin 34 (IL-34), is responsible for this discrepancy. Through the use of IL-34-deficient (Il34LacZ/LacZ) reporter mice, we found that keratinocytes and neurons were the main sources of IL-34. Il34LacZ/LacZ mice selectively lacked LCs and microglia and responded poorly to skin antigens and viral infection of the CNS. Thus, IL-34 specifically directs the differentiation of myeloid cells in the skin epidermis and CNS.


PLOS Pathogens | 2013

Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus

Pankaj Pal; Kimberly A. Dowd; James D. Brien; Melissa A. Edeling; Sergey Gorlatov; Syd Johnson; Iris Lee; Wataru Akahata; Gary J. Nabel; Mareike K. S. Richter; Jolanda M. Smit; Daved H. Fremont; Theodore C. Pierson; Mark T. Heise; Michael S. Diamond

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.


PLOS Pathogens | 2012

2′-O Methylation of the Viral mRNA Cap by West Nile Virus Evades Ifit1-Dependent and -Independent Mechanisms of Host Restriction In Vivo

Kristy J. Szretter; Brian P. Daniels; Hyelim Cho; Maria D. Gainey; Wayne M. Yokoyama; Michael Gale; Herbert W. Virgin; Robyn S. Klein; Ganes C. Sen; Michael S. Diamond

Prior studies have shown that 2′-O methyltransferase activity of flaviviruses, coronaviruses, and poxviruses promotes viral evasion of Ifit1, an interferon-stimulated innate immune effector protein. Viruses lacking 2′-O methyltransferase activity exhibited attenuation in primary macrophages that was rescued in cells lacking Ifit1 gene expression. Here, we examined the role of Ifit1 in restricting pathogenesis in vivo of wild type WNV (WNV-WT) and a mutant in the NS5 gene (WNV-E218A) lacking 2′-O methylation of the 5′ viral RNA cap. While deletion of Ifit1 had marginal effects on WNV-WT pathogenesis, WNV-E218A showed increased replication in peripheral tissues of Ifit1 −/− mice after subcutaneous infection, yet this failed to correlate with enhanced infection in the brain or lethality. In comparison, WNV-E218A was virulent after intracranial infection as judged by increased infection in different regions of the central nervous system (CNS) and a greater than 16,000-fold decrease in LD50 values in Ifit1 −/− compared to wild type mice. Ex vivo infection experiments revealed cell-type specific differences in the ability of an Ifit1 deficiency to complement the replication defect of WNV-E218A. In particular, WNV-E218A infection was impaired in both wild type and Ifit1 −/− brain microvascular endothelial cells, which are believed to participate in blood-brain barrier (BBB) regulation of virus entry into the CNS. A deficiency of Ifit1 also was associated with increased neuronal death in vivo, which was both cell-intrinsic and mediated by immunopathogenic CD8+ T cells. Our results suggest that virulent strains of WNV have largely evaded the antiviral effects of Ifit1, and viral mutants lacking 2′-O methylation are controlled in vivo by Ifit1-dependent and -independent mechanisms in different cell types.


Journal of Virology | 2009

Human Monoclonal Antibodies against West Nile Virus Induced by Natural Infection Neutralize at a Postattachment Step

Matthew R. Vogt; Bastiaan Moesker; Jaap Goudsmit; Mandy Jongeneelen; S. Kyle Austin; Theodore Oliphant; Steevenson Nelson; Theodore C. Pierson; Jan Wilschut; Mark Throsby; Michael S. Diamond

ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing mouse monoclonal antibodies (MAbs) recognize an epitope on the lateral ridge of domain III (DIII-lr) of the envelope (E) protein. However, studies with serum from human patients show that antibodies against the DIII-lr epitope comprise, at best, a minor component of the human anti-WNV antibody response. Herein, we characterize in detail two WNV-specific human MAbs, CR4348 and CR4354, that were isolated from B-cell populations of convalescent patients. These MAbs strongly neutralize WNV infection of cultured cells, protect mice against lethal infection in vivo, and yet poorly recognize recombinant forms of the E protein. Instead, CR4348 and CR4354 bind determinants on intact WNV virions and subviral particles in a pH-sensitive manner, and neutralization is altered by mutations at the dimer interface in domain II and the hinge between domains I and II, respectively. CR4348 and CR4354 human MAbs neutralize infection at a postattachment step in the viral life cycle, likely by inhibiting acid-induced fusion within the endosome.


PLOS Pathogens | 2009

A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes.

Bruce Thompson; Bastiaan Moesker; Jolanda M. Smit; Jan Wilschut; Michael S. Diamond; Daved H. Fremont

Defining the precise cellular mechanisms of neutralization by potently inhibitory antibodies is important for understanding how the immune system successfully limits viral infections. We recently described a potently inhibitory monoclonal antibody (MAb E16) against the envelope (E) protein of West Nile virus (WNV) that neutralizes infection even after virus has spread to the central nervous system. Herein, we define its mechanism of inhibition. E16 blocks infection primarily at a post-attachment step as antibody-opsonized WNV enters permissive cells but cannot escape from endocytic compartments. These cellular experiments suggest that E16 blocks the acid-catalyzed fusion step that is required for nucleocapsid entry into the cytoplasm. Indeed, E16 directly inhibits fusion of WNV with liposomes. Additionally, low-pH exposure of E16–WNV complexes in the absence of target membranes did not fully inactivate infectious virus, further suggesting that E16 prevents a structural transition required for fusion. Thus, a strongly neutralizing anti–WNV MAb with therapeutic potential is potently inhibitory because it blocks viral fusion and thereby promotes clearance by delivering virus to the lysosome for destruction.


PLOS Pathogens | 2011

A temporal role Of Type I interferon signaling in CD8+ T Cell maturation during acute West Nile virus infection

Amelia K. Pinto; Stephane Daffis; James D. Brien; Maria D. Gainey; Wayne M. Yokoyama; Kathleen C. F. Sheehan; Kenneth M. Murphy; Robert D. Schreiber; Michael S. Diamond

A genetic absence of the common IFN- α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR-/- mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8+ T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8+ T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8+ T cell development requires type I IFN signaling. WNV infection experiments in BATF3 -/- mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8+ T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8+ T cell response at a stage distinct from the initial priming event.


PLOS Neglected Tropical Diseases | 2013

Chikungunya Virus Infection Results in Higher and Persistent Viral Replication in Aged Rhesus Macaques Due to Defects in Anti-Viral Immunity

Ilhem Messaoudi; Jennifer Vomaske; Thomas Totonchy; Craig N. Kreklywich; Kristen Haberthur; Laura Springgay; James D. Brien; Michael S. Diamond; Victor R. DeFilippis; Daniel N. Streblow

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne Alphavirus that causes a clinical disease involving fever, myalgia, nausea and rash. The distinguishing feature of CHIKV infection is the severe debilitating poly-arthralgia that may persist for several months after viral clearance. Since its re-emergence in 2004, CHIKV has spread from the Indian Ocean region to new locations including metropolitan Europe, Japan, and even the United States. The risk of importing CHIKV to new areas of the world is increasing due to high levels of viremia in infected individuals as well as the recent adaptation of the virus to the mosquito species Aedes albopictus. CHIKV re-emergence is also associated with new clinical complications including severe morbidity and, for the first time, mortality. In this study, we characterized disease progression and host immune responses in adult and aged Rhesus macaques infected with either the recent CHIKV outbreak strain La Reunion (LR) or the West African strain 37997. Our results indicate that following intravenous infection and regardless of the virus used, Rhesus macaques become viremic between days 1–5 post infection. While adult animals are able to control viral infection, aged animals show persistent virus in the spleen. Virus-specific T cell responses in the aged animals were reduced compared to adult animals and the B cell responses were also delayed and reduced in aged animals. Interestingly, regardless of age, T cell and antibody responses were more robust in animals infected with LR compared to 37997 CHIKV strain. Taken together these data suggest that the reduced immune responses in the aged animals promotes long-term virus persistence in CHIKV-LR infected Rhesus monkeys.


Journal of Virology | 2012

CD8+ T Cells Use TRAIL To Restrict West Nile Virus Pathogenesis by Controlling Infection in Neurons

Bimmi Shrestha; Amelia K. Pinto; Sharone Green; Irene Bosch; Michael S. Diamond

ABSTRACT Previous studies of mice have demonstrated that an orchestrated sequence of innate and adaptive immune responses is required to control West Nile virus (WNV) infection in peripheral and central nervous system (CNS) tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; also known as CD253) has been reported to inhibit infection with dengue virus, a closely related flavivirus, in cell culture. To determine the physiological function of TRAIL in the context of flavivirus infection, we compared the pathogenesis of WNV in wild-type and TRAIL −/− mice. Mice lacking TRAIL showed increased vulnerability and death after subcutaneous WNV infection. Although no difference in viral burden was detected in peripheral tissues, greater viral infection was detected in the brain and spinal cord at late times after infection, and this was associated with delayed viral clearance in the few surviving TRAIL −/− mice. While priming of adaptive B and T cell responses and trafficking of immune and antigen-specific cells to the brain were undistinguishable from those in normal mice, in TRAIL −/− mice, CD8+ T cells showed qualitative defects in the ability to clear WNV infection. Adoptive transfer of WNV-primed wild-type but not TRAIL −/− CD8+ T cells to recipient CD8−/− mice efficiently limited infection in the brain and spinal cord, and analogous results were obtained when wild-type or TRAIL −/− CD8+ T cells were added to WNV-infected primary cortical neuron cultures ex vivo. Collectively, our results suggest that TRAIL produced by CD8+ T cells contributes to disease resolution by helping to clear WNV infection from neurons in the central nervous system.


PLOS Pathogens | 2011

Interferon Regulatory Factor-1 (IRF-1) Shapes Both Innate and CD8+ T Cell Immune Responses against West Nile Virus Infection

James D. Brien; Stephanie Daffis; Helen M. Lazear; Hyelim Cho; Mehul S. Suthar; Michael Gale; Michael S. Diamond

Interferon regulatory factor (IRF)-1 is an immunomodulatory transcription factor that functions downstream of pathogen recognition receptor signaling and has been implicated as a regulator of type I interferon (IFN)-αβ expression and the immune response to virus infections. However, this role for IRF-1 remains controversial because altered type I IFN responses have not been systemically observed in IRF-1 -/- mice. To evaluate the relationship of IRF-1 and immune regulation, we assessed West Nile virus (WNV) infectivity and the host response in IRF-1 -/- cells and mice. IRF-1 -/- mice were highly vulnerable to WNV infection with enhanced viral replication in peripheral tissues and rapid dissemination into the central nervous system. Ex vivo analysis revealed a cell-type specific antiviral role as IRF-1 -/- macrophages supported enhanced WNV replication but infection was unaltered in IRF-1 -/- fibroblasts. IRF-1 also had an independent and paradoxical effect on CD8+ T cell expansion. Although markedly fewer CD8+ T cells were observed in naïve animals as described previously, remarkably, IRF-1 -/- mice rapidly expanded their pool of WNV-specific cytolytic CD8+ T cells. Adoptive transfer and in vitro proliferation experiments established both cell-intrinsic and cell-extrinsic effects of IRF-1 on the expansion of CD8+ T cells. Thus, IRF-1 restricts WNV infection by modulating the expression of innate antiviral effector molecules while shaping the antigen-specific CD8+ T cell response.


Mbio | 2013

A Short Hairpin RNA Screen of Interferon-Stimulated Genes Identifies a Novel Negative Regulator of the Cellular Antiviral Response

Jianqing Li; Steve C. Ding; Hyelim Cho; Brian C. Chung; Michael Gale; Sumit K. Chanda; Michael S. Diamond

ABSTRACT The type I interferon (IFN) signaling pathway restricts infection of many divergent families of RNA and DNA viruses by inducing hundreds of IFN-stimulated genes (ISGs), some of which have direct antiviral activity. We screened 813 short hairpin RNA (shRNA) constructs targeting 245 human ISGs using a flow cytometry approach to identify genes that modulated infection of West Nile virus (WNV) in IFN-β-treated human cells. Thirty ISGs with inhibitory effects against WNV were identified, including several novel genes that had antiviral activity against related and unrelated positive-strand RNA viruses. We also defined one ISG, activating signal cointegrator complex 3 (ASCC3), which functioned as a negative regulator of the host defense response. Silencing of ASCC3 resulted in upregulation of multiple antiviral ISGs, which correlated with inhibition of infection of several positive-strand RNA viruses. Reciprocally, ectopic expression of human ASCC3 or mouse Ascc3 resulted in downregulation of ISGs and increased viral infection. Mechanism-of-action and RNA sequencing studies revealed that ASCC3 functions to modulate ISG expression in an IRF-3- and IRF-7-dependent manner. Compared to prior ectopic ISG expression studies, our shRNA screen identified novel ISGs that restrict infection of WNV and other viruses and defined a new counterregulatory ISG, ASCC3, which tempers cell-intrinsic immunity. IMPORTANCE West Nile virus (WNV) is a mosquito-transmitted virus that continues to pose a threat to public health. Innate immune responses, especially those downstream of type I interferon (IFN) signaling, are critical for controlling virus infection and spread. We performed a genetic screen using a gene silencing approach and identified 30 interferon-stimulated genes (ISGs) that contributed to the host antiviral response against WNV. As part of this screen, we also identified a novel negative regulatory protein, ASCC3, which dampens expression of ISGs, including those with antiviral or proinflammatory activity. In summary, our studies define a series of heretofore-uncharacterized ISGs with antiviral effects against multiple viruses or counterregulatory effects that temper IFN signaling and likely minimize immune-mediated pathology. West Nile virus (WNV) is a mosquito-transmitted virus that continues to pose a threat to public health. Innate immune responses, especially those downstream of type I interferon (IFN) signaling, are critical for controlling virus infection and spread. We performed a genetic screen using a gene silencing approach and identified 30 interferon-stimulated genes (ISGs) that contributed to the host antiviral response against WNV. As part of this screen, we also identified a novel negative regulatory protein, ASCC3, which dampens expression of ISGs, including those with antiviral or proinflammatory activity. In summary, our studies define a series of heretofore-uncharacterized ISGs with antiviral effects against multiple viruses or counterregulatory effects that temper IFN signaling and likely minimize immune-mediated pathology.

Collaboration


Dive into the Michael S. Diamond's collaboration.

Top Co-Authors

Avatar

Hyelim Cho

University of Washington

View shared research outputs
Top Co-Authors

Avatar

James D. Brien

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael Gale

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Amelia K. Pinto

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen M. Lazear

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kristy J. Szretter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Maria D. Gainey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore C. Pierson

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge