Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Furtwängler is active.

Publication


Featured researches published by Anja Furtwängler.


Nature | 2016

The genetic history of Ice Age Europe

Qiaomei Fu; Cosimo Posth; Mateja Hajdinjak; Martin Petr; Swapan Mallick; Daniel Fernandes; Anja Furtwängler; Wolfgang Haak; Matthias Meyer; Alissa Mittnik; Birgit Nickel; Alexander Peltzer; Nadin Rohland; Viviane Slon; Sahra Talamo; Iosif Lazaridis; Mark Lipson; Iain Mathieson; Stephan Schiffels; Pontus Skoglund; A.P. Derevianko; Nikolai Drozdov; Vyacheslav Slavinsky; Alexander Tsybankov; Renata Grifoni Cremonesi; Francesco Mallegni; Bernard Gély; Eligio Vacca; Manuel Ramón González Morales; Lawrence Guy Straus

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history.


Current Biology | 2016

Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Cosimo Posth; Gabriel Renaud; Alissa Mittnik; Dorothée G. Drucker; Hélène Rougier; Christophe Cupillard; Frédérique Valentin; Corinne Thevenet; Anja Furtwängler; Christoph Wißing; Michael Francken; Maria Malina; Michael Bolus; Martina Lari; Elena Gigli; Giulia Capecchi; Isabelle Crevecoeur; Cédric Beauval; Damien Flas; Mietje Germonpré; Johannes van der Plicht; Richard Cottiaux; Bernard Gély; Annamaria Ronchitelli; Kurt Wehrberger; Dan Grigorescu; Jiří Svoboda; Patrick Semal; David Caramelli; Hervé Bocherens

How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.


Nature Communications | 2017

Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods

Verena J. Schuenemann; Alexander Peltzer; Beatrix Welte; W. Paul van Pelt; Martyna Molak; Chuan-Chao Wang; Anja Furtwängler; Christian Urban; Ella Reiter; Kay Nieselt; Barbara Teßmann; Michael Francken; Katerina Harvati; Wolfgang Haak; Stephan Schiffels; Johannes Krause

Egypt, located on the isthmus of Africa, is an ideal region to study historical population dynamics due to its geographic location and documented interactions with ancient civilizations in Africa, Asia and Europe. Particularly, in the first millennium BCE Egypt endured foreign domination leading to growing numbers of foreigners living within its borders possibly contributing genetically to the local population. Here we present 90 mitochondrial genomes as well as genome-wide data sets from three individuals obtained from Egyptian mummies. The samples recovered from Middle Egypt span around 1,300 years of ancient Egyptian history from the New Kingdom to the Roman Period. Our analyses reveal that ancient Egyptians shared more ancestry with Near Easterners than present-day Egyptians, who received additional sub-Saharan admixture in more recent times. This analysis establishes ancient Egyptian mummies as a genetic source to study ancient human history and offers the perspective of deciphering Egypts past at a genome-wide level.


Nature | 2017

Genetic origins of the Minoans and Mycenaeans

Iosif Lazaridis; Alissa Mittnik; Nick Patterson; Swapan Mallick; Nadin Rohland; Saskia Pfrengle; Anja Furtwängler; Alexander Peltzer; Cosimo Posth; Andonis Vasilakis; P. J. P. McGeorge; Eleni Konsolaki-Yannopoulou; George Korres; Holley Martlew; Manolis Michalodimitrakis; Mehmet Özsait; Nesrin Özsait; Anastasia Papathanasiou; Michael P. Richards; Songül Alpaslan Roodenberg; Yannis Tzedakis; Robert Arnott; Daniel Fernandes; Jeffery R. Hughey; Dimitra Lotakis; Patrick A. Navas; Yannis Maniatis; John A. Stamatoyannopoulos; Kristin Stewardson; Philipp W. Stockhammer

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter–gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Scientific Reports | 2016

Neandertal cannibalism and Neandertal bones used as tools in Northern Europe.

Hélène Rougier; Isabelle Crevecoeur; Cédric Beauval; Cosimo Posth; Damien Flas; Christoph Wißing; Anja Furtwängler; Mietje Germonpré; Asier Gómez-Olivencia; Patrick Semal; Johannes van der Plicht; Hervé Bocherens; Johannes Krause

Almost 150 years after the first identification of Neandertal skeletal material, the cognitive and symbolic abilities of these populations remain a subject of intense debate. We present 99 new Neandertal remains from the Troisième caverne of Goyet (Belgium) dated to 40,500–45,500 calBP. The remains were identified through a multidisciplinary study that combines morphometrics, taphonomy, stable isotopes, radiocarbon dating and genetic analyses. The Goyet Neandertal bones show distinctive anthropogenic modifications, which provides clear evidence for butchery activities as well as four bones having been used for retouching stone tools. In addition to being the first site to have yielded multiple Neandertal bones used as retouchers, Goyet not only provides the first unambiguous evidence of Neandertal cannibalism in Northern Europe, but also highlights considerable diversity in mortuary behaviour among the region’s late Neandertal population in the period immediately preceding their disappearance.


Molecular Biology and Evolution | 2017

Mitogenome Diversity in Sardinians: A Genetic Window onto an Island's Past

Anna Olivieri; Carlo Sidore; Alessandro Achilli; Andrea Angius; Cosimo Posth; Anja Furtwängler; Stefania Brandini; Marco Rosario Capodiferro; Francesca Gandini; Magdalena Zoledziewska; Maristella Pitzalis; Andrea Maschio; Fabio Busonero; Luca Lai; Robin Skeates; Maria Giuseppina Gradoli; Jessica Beckett; Michele Marongiu; Vittorio Mazzarello; Patrizia Marongiu; Salvatore Rubino; Teresa Rito; Vincent Macaulay; Ornella Semino; Maria Pala; Gonçalo R. Abecasis; David Schlessinger; Eduardo Conde-Sousa; Pedro Soares; Martin B. Richards

Sardinians are “outliers” in the European genetic landscape and, according to paleogenomic nuclear data, the closest to early European Neolithic farmers. To learn more about their genetic ancestry, we analyzed 3,491 modern and 21 ancient mitogenomes from Sardinia. We observed that 78.4% of modern mitogenomes cluster into 89 haplogroups that most likely arose in situ. For each Sardinian-specific haplogroup (SSH), we also identified the upstream node in the phylogeny, from which non-Sardinian mitogenomes radiate. This provided minimum and maximum time estimates for the presence of each SSH on the island. In agreement with demographic evidence, almost all SSHs coalesce in the post-Nuragic, Nuragic and Neolithic-Copper Age periods. For some rare SSHs, however, we could not dismiss the possibility that they might have been on the island prior to the Neolithic, a scenario that would be in agreement with archeological evidence of a Mesolithic occupation of Sardinia.


Nature Communications | 2018

The genetic prehistory of the Baltic Sea region

Alissa Mittnik; Chuan-Chao Wang; Saskia Pfrengle; Mantas Daubaras; Gunita Zariņa; Fredrik Hallgren; Raili Allmäe; Valery Khartanovich; Vyacheslav Moiseyev; Mari Tõrv; Anja Furtwängler; Aida Andrades Valtueña; Michal Feldman; Christos Economou; M. Oinonen; Andrejs Vasks; Elena Balanovska; David Reich; Rimantas Jankauskas; Wolfgang Haak; Stephan Schiffels; Johannes Krause

While the series of events that shaped the transition between foraging societies and food producers are well described for Central and Southern Europe, genetic evidence from Northern Europe surrounding the Baltic Sea is still sparse. Here, we report genome-wide DNA data from 38 ancient North Europeans ranging from ~9500 to 2200 years before present. Our analysis provides genetic evidence that hunter-gatherers settled Scandinavia via two routes. We reveal that the first Scandinavian farmers derive their ancestry from Anatolia 1000 years earlier than previously demonstrated. The range of Mesolithic Western hunter-gatherers extended to the east of the Baltic Sea, where these populations persisted without gene-flow from Central European farmers during the Early and Middle Neolithic. The arrival of steppe pastoralists in the Late Neolithic introduced a major shift in economy and mediated the spread of a new ancestry associated with the Corded Ware Complex in Northern Europe.The population history of Europe is complex and its very north has not yet been comprehensively studied at a genetic level. Here, Mittnik et al. report genome-wide data from 38 ancient individuals from the Eastern Baltic, Russia and Scandinavia to analyse gene flow throughout the Mesolithic and Bronze Age.


BioTechniques | 2017

Extraction of ultrashort DNA molecules from herbarium specimens

Rafal M. Gutaker; Ella Reiter; Anja Furtwängler; Verena J. Schuenemann; Hernán A. Burbano

DNA extracted from herbarium specimens is highly fragmented; therefore, it is crucial to use extraction protocols that retrieve short DNA molecules. Improvements in extraction and DNA library preparation protocols for animal remains have allowed efficient retrieval of molecules shorter than 50 bp. Here, we applied these improvements to DNA extraction protocols for herbarium specimens and evaluated extraction performance by shotgun sequencing, which allows an accurate estimation of the distribution of DNA fragment lengths. Extraction with N-phenacylthiazolium bromide (PTB) buffer decreased median fragment length by 35% when compared with cetyl-trimethyl ammonium bromide (CTAB); modifying the binding conditions of DNA to silica allowed for an additional decrease of 10%. We did not observe a further decrease in length for single-stranded DNA (ssDNA) versus double-stranded DNA (dsDNA) library preparation methods. Our protocol enables the retrieval of ultrashort molecules from herbarium specimens, which will help to unlock the genetic information stored in herbaria.


bioRxiv | 2017

The genetic history of Northern Europe

Alissa Mittnik; Chuan-Chao Wang; Saskia Pfrengle; Mantas Daubaras; Gunita Zariņa; Fredrik Hallgren; Raili Allmäe; Valery Khartanovich; Vyacheslav Moiseyev; Anja Furtwängler; Aida Andrades Valtueña; Michal Feldman; Christos Economou; M. Oinonen; Andrejs Vasks; Mari Tõrv; Oleg Balanovsky; David Reich; Rimantas Jankauskas; Wolfgang Haak; Stephan Schiffels; Johannes Krause

Recent ancient DNA studies have revealed that the genetic history of modern Europeans was shaped by a series of migration and admixture events between deeply diverged groups. While these events are well described in Central and Southern Europe, genetic evidence from Northern Europe surrounding the Baltic Sea is still sparse. Here we report genome-wide DNA data from 24 ancient North Europeans ranging from ∼7,500 to 200 calBCE spanning the transition from a hunter-gatherer to an agricultural lifestyle, as well as the adoption of bronze metallurgy. We show that Scandinavia was settled after the retreat of the glacial ice sheets from a southern and a northern route, and that the first Scandinavian Neolithic farmers derive their ancestry from Anatolia 1000 years earlier than previously demonstrated. The range of Western European Mesolithic hunter-gatherers extended to the east of the Baltic Sea, where these populations persisted without gene-flow from Central European farmers until around 2,900 calBCE when the arrival of steppe pastoralists introduced a major shift in economy and established wide-reaching networks of contact within the Corded Ware Complex.


Archive | 2018

Systematic radiocarbon dating of human remains from the Late Neolithic collective dolmen burial of Oberbipp (Switzerland).

Noah Steuri; Inga Siebke; Anja Furtwängler; Sönke Szidat; Sandra Lösch; Albert Hafner

Collective megalithic burials of the Late Neolithic are found in the western parts of Europe between Southern Scandinavia and the Iberian Peninsula, however the discovery of undisturbed sites is extremely rare. The dolmen of Oberbipp is one of the few collective megalithic burial sites including human remains in Switzerland. The site therefore provides a unique opportunity for multidisciplinary research. Morphological analysis indicates, that approximately 40 individuals are buried in the grave chamber. It was not possible archaeologically to determine different occupation periods within the inhumations. Since dolmen graves were often reused over hundreds of years, this question could only be addressed with radiocarbon dating.

Collaboration


Dive into the Anja Furtwängler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ella Reiter

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge