Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cosimo Posth is active.

Publication


Featured researches published by Cosimo Posth.


Nature | 2016

The genetic history of Ice Age Europe

Qiaomei Fu; Cosimo Posth; Mateja Hajdinjak; Martin Petr; Swapan Mallick; Daniel Fernandes; Anja Furtwängler; Wolfgang Haak; Matthias Meyer; Alissa Mittnik; Birgit Nickel; Alexander Peltzer; Nadin Rohland; Viviane Slon; Sahra Talamo; Iosif Lazaridis; Mark Lipson; Iain Mathieson; Stephan Schiffels; Pontus Skoglund; A.P. Derevianko; Nikolai Drozdov; Vyacheslav Slavinsky; Alexander Tsybankov; Renata Grifoni Cremonesi; Francesco Mallegni; Bernard Gély; Eligio Vacca; Manuel Ramón González Morales; Lawrence Guy Straus

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history.


Current Biology | 2016

Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Cosimo Posth; Gabriel Renaud; Alissa Mittnik; Dorothée G. Drucker; Hélène Rougier; Christophe Cupillard; Frédérique Valentin; Corinne Thevenet; Anja Furtwängler; Christoph Wißing; Michael Francken; Maria Malina; Michael Bolus; Martina Lari; Elena Gigli; Giulia Capecchi; Isabelle Crevecoeur; Cédric Beauval; Damien Flas; Mietje Germonpré; Johannes van der Plicht; Richard Cottiaux; Bernard Gély; Annamaria Ronchitelli; Kurt Wehrberger; Dan Grigorescu; Jiří Svoboda; Patrick Semal; David Caramelli; Hervé Bocherens

How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.


Nature | 2016

Genomic insights into the peopling of the Southwest Pacific

Pontus Skoglund; Cosimo Posth; Kendra Sirak; Matthew Spriggs; Frédérique Valentin; Stuart Bedford; Geoffrey Clark; Christian Reepmeyer; Fiona Petchey; Daniel Fernandes; Qiaomei Fu; Eadaoin Harney; Mark Lipson; Swapan Mallick; Mario Novak; Nadine Rohland; Kristin Stewardson; Syafiq Abdullah; Murray P. Cox; Françoise R. Friedlaender; Jonathan S. Friedlaender; Toomas Kivisild; George Koki; Pradiptajati Kusuma; D. Andrew Merriwether; F. X. Ricaut; Joseph Wee; Nick Patterson; Johannes Krause; Ron Pinhasi

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100–2,700 years before present) and one from Tonga (about 2,700–2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.


Nature Communications | 2017

Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals

Cosimo Posth; Christoph Wißing; Keiko Kitagawa; Luca Pagani; Laura van Holstein; Fernando Racimo; Kurt Wehrberger; Nicholas J. Conard; Claus Joachim Kind; Hervé Bocherens; Johannes Krause

Ancient DNA is revealing new insights into the genetic relationship between Pleistocene hominins and modern humans. Nuclear DNA indicated Neanderthals as a sister group of Denisovans after diverging from modern humans. However, the closer affinity of the Neanderthal mitochondrial DNA (mtDNA) to modern humans than Denisovans has recently been suggested as the result of gene flow from an African source into Neanderthals before 100,000 years ago. Here we report the complete mtDNA of an archaic femur from the Hohlenstein–Stadel (HST) cave in southwestern Germany. HST carries the deepest divergent mtDNA lineage that splits from other Neanderthals ∼270,000 years ago, providing a lower boundary for the time of the putative mtDNA introgression event. We demonstrate that a complete Neanderthal mtDNA replacement is feasible over this time interval even with minimal hominin introgression. The highly divergent HST branch is indicative of greater mtDNA diversity during the Middle Pleistocene than in later periods.


Nature | 2017

Genetic origins of the Minoans and Mycenaeans

Iosif Lazaridis; Alissa Mittnik; Nick Patterson; Swapan Mallick; Nadin Rohland; Saskia Pfrengle; Anja Furtwängler; Alexander Peltzer; Cosimo Posth; Andonis Vasilakis; P. J. P. McGeorge; Eleni Konsolaki-Yannopoulou; George Korres; Holley Martlew; Manolis Michalodimitrakis; Mehmet Özsait; Nesrin Özsait; Anastasia Papathanasiou; Michael P. Richards; Songül Alpaslan Roodenberg; Yannis Tzedakis; Robert Arnott; Daniel Fernandes; Jeffery R. Hughey; Dimitra Lotakis; Patrick A. Navas; Yannis Maniatis; John A. Stamatoyannopoulos; Kristin Stewardson; Philipp W. Stockhammer

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter–gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Scientific Reports | 2016

Neandertal cannibalism and Neandertal bones used as tools in Northern Europe.

Hélène Rougier; Isabelle Crevecoeur; Cédric Beauval; Cosimo Posth; Damien Flas; Christoph Wißing; Anja Furtwängler; Mietje Germonpré; Asier Gómez-Olivencia; Patrick Semal; Johannes van der Plicht; Hervé Bocherens; Johannes Krause

Almost 150 years after the first identification of Neandertal skeletal material, the cognitive and symbolic abilities of these populations remain a subject of intense debate. We present 99 new Neandertal remains from the Troisième caverne of Goyet (Belgium) dated to 40,500–45,500 calBP. The remains were identified through a multidisciplinary study that combines morphometrics, taphonomy, stable isotopes, radiocarbon dating and genetic analyses. The Goyet Neandertal bones show distinctive anthropogenic modifications, which provides clear evidence for butchery activities as well as four bones having been used for retouching stone tools. In addition to being the first site to have yielded multiple Neandertal bones used as retouchers, Goyet not only provides the first unambiguous evidence of Neandertal cannibalism in Northern Europe, but also highlights considerable diversity in mortuary behaviour among the region’s late Neandertal population in the period immediately preceding their disappearance.


Trends in Genetics | 2017

Mining Metagenomic Data Sets for Ancient DNA: Recommended Protocols for Authentication

Felix M. Key; Cosimo Posth; Johannes Krause; Alexander Herbig; Kirsten I. Bos

While a comparatively young area of research, investigations relying on ancient DNA data have been highly valuable in revealing snapshots of genetic variation in both the recent and the not-so-recent past. Born out of a tradition of single-locus PCR-based approaches that often target individual species, stringent criteria for both data acquisition and analysis were introduced early to establish high standards of data quality. Today, the immense volume of data made available through next-generation sequencing has significantly increased the analytical resolution offered by processing ancient tissues and permits parallel analyses of host and microbial communities. The adoption of this new approach to data acquisition, however, requires an accompanying update on methods of DNA authentication, especially given that ancient molecules are expected to exist in low proportions in archaeological material, where an environmental signal is likely to dominate. In this review, we provide a summary of recent data authentication approaches that have been successfully used to distinguish between endogenous and nonendogenous DNA sequences in metagenomic data sets. While our discussion mostly centers on the detection of ancient human and ancient bacterial pathogen DNA, their applicability is far wider.


Molecular Biology and Evolution | 2017

Mitogenome Diversity in Sardinians: A Genetic Window onto an Island's Past

Anna Olivieri; Carlo Sidore; Alessandro Achilli; Andrea Angius; Cosimo Posth; Anja Furtwängler; Stefania Brandini; Marco Rosario Capodiferro; Francesca Gandini; Magdalena Zoledziewska; Maristella Pitzalis; Andrea Maschio; Fabio Busonero; Luca Lai; Robin Skeates; Maria Giuseppina Gradoli; Jessica Beckett; Michele Marongiu; Vittorio Mazzarello; Patrizia Marongiu; Salvatore Rubino; Teresa Rito; Vincent Macaulay; Ornella Semino; Maria Pala; Gonçalo R. Abecasis; David Schlessinger; Eduardo Conde-Sousa; Pedro Soares; Martin B. Richards

Sardinians are “outliers” in the European genetic landscape and, according to paleogenomic nuclear data, the closest to early European Neolithic farmers. To learn more about their genetic ancestry, we analyzed 3,491 modern and 21 ancient mitogenomes from Sardinia. We observed that 78.4% of modern mitogenomes cluster into 89 haplogroups that most likely arose in situ. For each Sardinian-specific haplogroup (SSH), we also identified the upstream node in the phylogeny, from which non-Sardinian mitogenomes radiate. This provided minimum and maximum time estimates for the presence of each SSH on the island. In agreement with demographic evidence, almost all SSHs coalesce in the post-Nuragic, Nuragic and Neolithic-Copper Age periods. For some rare SSHs, however, we could not dismiss the possibility that they might have been on the island prior to the Neolithic, a scenario that would be in agreement with archeological evidence of a Mesolithic occupation of Sardinia.


Nature | 2018

Reconstructing the genetic history of late Neanderthals.

Mateja Hajdinjak; Qiaomei Fu; Alexander Hübner; Martin Petr; Fabrizio Mafessoni; Steffi Grote; Pontus Skoglund; Vagheesh Narasimham; Hélène Rougier; Isabelle Crevecoeur; Patrick Semal; Marie Soressi; Sahra Talamo; Jean-Jacques Hublin; Ivan Gušić; Željko Kućan; Pavao Rudan; Liubov V. Golovanova; Vladimir B. Doronichev; Cosimo Posth; Johannes Krause; Petra Korlević; Sarah Nagel; Birgit Nickel; Montgomery Slatkin; Nick Patterson; David Reich; Kay Prüfer; Matthias Meyer; Svante Pääbo

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.


Nature Ecology and Evolution | 2018

Language continuity despite population replacement in Remote Oceania.

Cosimo Posth; Kathrin Nägele; Heidi Colleran; Frédérique Valentin; Stuart Bedford; Kaitip W. Kami; Richard Shing; Hallie R. Buckley; Rebecca L. Kinaston; Mary Walworth; Geoffrey Clark; Christian Reepmeyer; James L. Flexner; Tamara Maric; Johannes Moser; Julia Gresky; Lawrence Kiko; Kathryn J. H. Robson; Kathryn Auckland; Stephen Oppenheimer; Adrian V. S. Hill; Alex Mentzer; Jana Zech; Fiona Petchey; Patrick Roberts; Choongwon Jeong; Russell D. Gray; Johannes Krause; Adam Powell

Recent genomic analyses show that the earliest peoples reaching Remote Oceania—associated with Austronesian-speaking Lapita culture—were almost completely East Asian, without detectable Papuan ancestry. However, Papuan-related genetic ancestry is found across present-day Pacific populations, indicating that peoples from Near Oceania have played a significant, but largely unknown, ancestral role. Here, new genome-wide data from 19 ancient South Pacific individuals provide direct evidence of a so-far undescribed Papuan expansion into Remote Oceania starting ~2,500 yr bp, far earlier than previously estimated and supporting a model from historical linguistics. New genome-wide data from 27 contemporary ni-Vanuatu demonstrate a subsequent and almost complete replacement of Lapita-Austronesian by Near Oceanian ancestry. Despite this massive demographic change, incoming Papuan languages did not replace Austronesian languages. Population replacement with language continuity is extremely rare—if not unprecedented—in human history. Our analyses show that rather than one large-scale event, the process was incremental and complex, with repeated migrations and sex-biased admixture with peoples from the Bismarck Archipelago.Genome-wide data from ancient and modern individuals in Remote Oceania indicate population replacement but language continuity over the past 2,500 years. Papuan migrations led to almost complete genetic replacement of in situ East Asian-derived populations, but not replacement of Austronesian languages.

Collaboration


Dive into the Cosimo Posth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hélène Rougier

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédérique Valentin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge