Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja Hohtola is active.

Publication


Featured researches published by Anja Hohtola.


Plant Physiology | 2002

Expression of Genes Involved in Anthocyanin Biosynthesis in Relation to Anthocyanin, Proanthocyanidin, and Flavonol Levels during Bilberry Fruit Development

Laura Jaakola; Kaisu Määttä; Anna Maria Pirttilä; Riitta Törrönen; Sirpa Kärenlampi; Anja Hohtola

The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.


Molecular Biotechnology | 2001

Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit

Laura Jaakola; Anna Maria Pirttilä; Minna Halonen; Anja Hohtola

A simple and efficient method is described for isolating high quality RNA from bilberry fruit. The procedure is based on the use of hexadecyltrimethyl ammonium bromide (CTAB), polyvinylpyrrolidone (PVP), and β-mercaptoethanol in an extraction buffer in order to eliminate the polysaccharides and prevent the oxidation of phenolic compounds. This method is a modification of the one described for pine trees, and yields high-quality RNA suitable for cDNA based methodologies. This method is applicable for a variety of plant tissues.


Planta | 2004

Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves

Laura Jaakola; Kaisu Määttä-Riihinen; Sirpa Kärenlampi; Anja Hohtola

The effect of solar radiation on flavonoid biosynthesis was studied in bilberry (Vaccinium myrtillus L.) leaves. Expression of flavonoid pathway genes of bilberry was studied in the upper leaves of bilberry, exposed to direct sunlight, in the shaded leaves growing lower in the same plants and in fruits. Bilberry-specific digoxigenin–dUTP-labeled cDNA fragments of five genes from the general phenylpropanoid pathway coding phenylalanine ammonia-lyase and from the flavonoid pathway coding chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase were used as probes in gene expression analysis. Anthocyanins, catechins, proanthocyanidins, flavonols and hydroxycinnamic acids from the leaves and fruits were identified and quantified using high-performance liquid chromatography combined with a diode array detector. An increase in the expression of the studied flavonoid pathway genes was observed in leaves growing under direct sun exposure. Also, the concentrations of anthocyanins, catechins, flavonols and hydroxycinnamic acids were higher in the leaves exposed to direct sunlight. However, the concentration of polymeric procyanidins was lower in sun-exposed leaves, whereas that of prodelphinidins was slightly increased. The results give further support for the protective role of flavonoids and hydroxy cinnamic acids against high solar radiation in plants. Also, the roles of different flavonoid compounds as a defense against stress caused by sun exposure is discussed.


Plant Cell and Environment | 2010

Effect of latitude on flavonoid biosynthesis in plants

Laura Jaakola; Anja Hohtola

The growth conditions in different latitudes vary markedly with season, day length, light quality and temperature. Many plant species have adapted well to the distinct environments through different strategies, one of which is the production of additional secondary metabolites. Flavonoids are a widely spread group of plant secondary metabolites that are involved in many crucial functions of plants. Our understanding of the biosynthesis, occurrence and function of flavonoids has increased rapidly in recent decades. Numerous studies have been published on the influence of environmental factors on the biosynthesis of flavonoids. However, extensive long-term studies that examine the effect of the characteristics of northern climates on flavonoid biosynthesis are still scarce. This review focuses on the current knowledge about the effect of light intensity, photoperiod and temperature on the gene-environment interaction related to flavonoid biosynthesis in plants.


Applied and Environmental Microbiology | 2000

Detection of Intracellular Bacteria in the Buds of Scotch Pine (Pinus sylvestris L.) by In Situ Hybridization

Anna Maria Pirttilä; Hanna Laukkanen; Helmut Pospiech; Raili Myllylä; Anja Hohtola

ABSTRACT Bacterial isolates were obtained from pine (Pinus sylvestris L.) tissue cultures and identified asMethylobacterium extorquens and Pseudomonas synxantha. The existence of bacteria in pine buds was investigated by 16S rRNA in situ hybridization. Bacteria inhabited the buds of every tree examined, primarily colonizing the cells of scale primordia and resin ducts.


Plant Molecular Biology Reporter | 2001

DNA isolation methods for medicinal and aromatic plants

Anna Maria Pirttilä; Merja Hirsikorpi; Terttu Kämäräinen; Laura Jaakola; Anja Hohtola

Several protocols described for plant DNA isolation fail to produce good quality DNA from medicinal herbs and aromatic plants. These plants contain exceptionally high amounts of secondary metabolites that interfere with DNA isolation. To address this problem, we developed 2 DNA isolation methods for sundew and tarragon that produce DNA suitable for molecular biological applications. One of the methods also is applicable for milfoil and Siberian ginseng.


Plant Physiology | 2010

A SQUAMOSA MADS-box gene involved in the regulation of anthocyanin accumulation in bilberry fruits

Laura Jaakola; Mervin Poole; Matthew O. Jones; Terttu Kämäräinen-Karppinen; Janne J. Koskimäki; Anja Hohtola; Hely Häggman; Paul D. Fraser; Kenneth Manning; Graham J. King; Helen Thomson; Graham B. Seymour

Anthocyanins are important health-promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus) is one of the best sources of these compounds. Here, we report on the expression pattern and functional analysis of a SQUAMOSA-class MADS box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatially and temporally linked with color development and anthocyanin-related gene expression. Virus-induced gene silencing was used to suppress VmTDR4 expression in bilberry, resulting in substantial reduction in anthocyanin levels in fully ripe fruits. Chalcone synthase was used as a positive control in the virus-induced gene silencing experiments. Additionally, in sectors of fruit tissue in which the expression of the VmTDR4 gene was silenced, the expression of R2R3 MYB family transcription factors related to the biosynthesis of flavonoids was also altered. We conclude that VmTDR4 plays an important role in the accumulation of anthocyanins during normal ripening in bilberry, probably through direct or indirect control of transcription factors belonging to the R2R3 MYB family.


Plant Cell Tissue and Organ Culture | 1988

Seasonal changes in explant viability and contamination of tissue cultures from mature Scots pine

Anja Hohtola

Explants from 10 to 40-year-old Scots pine trees (Pinus sylvestris L.) were cultured in vitro. Material was collected from Northern Finland once or twice a week during 1984–1987. excised shoot meristems and lower parts of the buds formed soft callus on modified MS medium. A seasonal effect was observed in the explant viability and degree of contamination. Callus proliferation was highest from explants collected in December and January and during the growing season from April to July, and lowest in February and during the autumn from September to November. It seemed that the bud metabolism at each particular time was rather persistent and affected the outcome of the experiments. Contamination was significantly higher from December to April. Organogenesis occurred only rarely.


FEBS Journal | 2008

Octaketide‐producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins

Katja Karppinen; Juho Hokkanen; Sampo Mattila; Peter Neubauer; Anja Hohtola

Hypericins are biologically active constituents of Hypericum perforatum (St John’s wort). It is likely that emodin anthrone, an anthraquinone precursor of hypericins, is biosynthesized via the polyketide pathway by type III polyketide synthase (PKS). A PKS from H. perforatum, HpPKS2, was investigated for its possible involvement in the biosynthesis of hypericins. Phylogenetic tree analysis revealed that HpPKS2 groups with functionally divergent non‐chalcone‐producing plant‐specific type III PKSs, but it is not particularly closely related to any of the currently known type III PKSs. A recombinant HpPKS2 expressed in Escherichia coli resulted in an enzyme of ∼ 43 kDa. The purified enzyme catalysed the condensation of acetyl‐CoA with two to seven malonyl‐CoA to yield tri‐ to octaketide products, including octaketides SEK4 and SEK4b, as well as heptaketide aloesone. Although HpPKS2 was found to have octaketide synthase activity, production of emodin anthrone, a supposed octaketide precursor of hypericins, was not detected. The enzyme also accepted isobutyryl‐CoA, benzoyl‐CoA and hexanoyl‐CoA as starter substrates producing a variety of tri‐ to heptaketide products. In situ RNA hybridization localized the HpPKS2 transcripts in H. perforatum leaf margins, flower petals and stamens, specifically in multicellular dark glands accumulating hypericins. Based on our results, HpPKS2 may have a role in the biosynthesis of hypericins in H. perforatum but some additional factors are possibly required for the production of emodin anthrone in vivo.


Microbial Ecology | 2003

Two endophytic fungi in different tissues of scots pine buds (Pinus sylvestris L.).

Anna Maria Pirttilä; Helmut Pospiech; Hanna Laukkanen; Raili Myllylä; Anja Hohtola

Two fungal species were isolated with different frequencies from pine tissue cultures originating from buds. One species was detected in 33.1% of the cultures initiated in March, and another was present in 1.7% of cultures initiated in June. Based on analyses of phylogenetic and physiological characteristics these fungi were identified as Hormonema dematioides (isolated in March) and Rhodotorula minuta (isolated in June). Probes targeted towards the 18S rRNA of H. dematioides and R. minuta were made. When in situ hybridizations were performed on pine bud tissue, R. minuta was detected inside the cells of meristematic tissue in 40% of the samples, in contrast to H. dematioides, which was not found in this tissue. Using light microscopy, H. dematioides was found to be localized in the scale tissues of the buds. Fungal endophytes have previously been detected in scale tissues, but not in the meristematic tissues of buds. The habitats of these fungi may reflect their different roles in the plant.

Collaboration


Dive into the Anja Hohtola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Neubauer

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge