Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ari Tolonen is active.

Publication


Featured researches published by Ari Tolonen.


Drug Metabolism and Disposition | 2010

STABLE EXPRESSION, ACTIVITY AND INDUCIBILITY OF CYTOCHROMES P450 IN DIFFERENTIATED HepaRG CELLS

Sébastien Anthérieu; Christophe Chesne; Ruoya Li; Sandrine Camus; Agustin Lahoz; Laura Picazo; Miia Turpeinen; Ari Tolonen; Jouko Uusitalo; Christiane Guguen-Guillouzo; André Guillouzo

HepaRG cells possess the unique property to differentiate in vitro and to express various functions of mature hepatocytes, including the major cytochromes P450 (P450s). In the present study, we carefully analyzed mRNA expression and activity of the major P450s and their responsiveness to three prototypical inducers, phenobarbital, rifampicin, and omeprazole, in differentiated HepaRG cell cultures over a 4-week period after low and high seeding. Only minor differences were observed in P450 activities when measured by two cocktails of probe substrates, probably related to the choice and/or concentration of substrates. Similar results were obtained from the two cell seeding conditions. Expression and activities of several P450s were dimethyl sulfoxide-dependent. However, basal P450 expression and activities as well as their responsiveness to the prototypical inducers were well maintained over the 4-week period, and a good correlation was observed between transcript levels and corresponding activities. Thus, CYP1A2, CYP2B6, and CYP3A4 were found to accurately respond to their respective prototypical inducers, i.e., omeprazole, phenobarbital, and rifampicin. Likewise, basal expression of several phase II enzymes, transporters, and nuclear receptors, and response to inducers were also well preserved. More genes were found to be induced in HepaRG cells than in primary human hepatocytes, and no marked variation was noticed between the different passages. Taken together, these data support the conclusion that HepaRG cells represent a promising surrogate to primary human hepatocytes for xenobiotic metabolism and toxicity studies.


Drug Discovery Today | 2009

Liquid chromatography-mass spectrometry in in vitro drug metabolite screening

Ari Tolonen; Miia Turpeinen; Olavi Pelkonen

A combination of high performance liquid chromatography (HPLC) and mass spectrometry (LC/MS) has proven its status as the most powerful analytical tool for screening and identifying drug metabolites in modern drug discovery. These techniques have become irreplaceable for drug metabolism laboratories, providing high amounts of information from a wide variety of samples. This review focuses on the most common and useful applications of these techniques when working on in vitro metabolism, more specifically with screening and identification of chemically stable or reactive metabolites formed via biotransformation reactions. Matching specific tasks and suitable instruments is a recurring consideration; for many reasons, the time-of-flight or orbitrap mass spectrometry provides clearly increased efficiency in metabolite profiling compared to other types of mass spectrometry.


Toxicology in Vitro | 2009

Functional expression, inhibition and induction of CYP enzymes in HepaRG cells

Miia Turpeinen; Ari Tolonen; Christophe Chesne; André Guillouzo; Jouko Uusitalo; Olavi Pelkonen

Practically all human hepatocyte cell lines are deficient in major cytochrome P450 (CYP)-related enzyme activities, making them unrepresentative of in vivo hepatocytes. We have used the recently developed HepaRG cell line to determine the spectrum of most important CYP enzyme activities involved in xenobiotic metabolism (CYP1A1/2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) and the effect of the prototypical CYP-inducer phenobarbital and a panel of known CYP-selective inhibitors on these activities. Comparison of these activities was carried out with two human primary hepatocyte populations. We show that excluding CYP2A6 and CYP2E1, HepaRG cells express high functional levels of most of the major xenobiotic metabolising CYPs. These activities were found to be selectively inhibited and induced by prototypical CYP-selective inhibitors and inducer at comparable levels to primary hepatocytes. In conclusion, HepaRG cells may be a promising cell line for various applications, which currently employ hepatic subcellular preparations or cultured primary hepatocytes.


Rapid Communications in Mass Spectrometry | 2009

Rapid detection and characterization of reactive drug metabolites in vitro using several isotope‐labeled trapping agents and ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry

Timo Rousu; Olavi Pelkonen; Ari Tolonen

Reactive metabolites are believed to be one of the main reasons for unexpected drug-induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione-trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide-trapped metabolites were found for eight and semicarbazide-trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup.


Journal of Agricultural and Food Chemistry | 2009

Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves.

Juho Hokkanen; Sampo Mattila; Laura Jaakola; Anna Maria Pirttilä; Ari Tolonen

Phenolic compounds from leaves of lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.), and the natural hybrid of bilberry and lingonberry (Vaccinium x intermedium Ruthe L., hybrid bilberry) were identified using LC/TOF-MS and LC/MS/MS after extraction from the plant material in methanol in an ultrasonicator. The phenolic profiles in the plants were compared using the LC/TOF-MS responses. This is the first thorough report of phenolic compounds in hybrid bilberry. In total, 51 different phenolic compounds were identified, including flavan-3-ols, proanthocyanidins, flavonols and their glycosides, and various phenolic acid conjugates. Of the identified compounds, 35 were detected in bilberry, 36 in lingonberry, and 46 in the hybrid. To our knowledge, seven compounds were previously unreported in Vaccinium genus and many of the compounds are reported for the first time from bilberry and lingonberry.


Journal of Chromatography A | 2008

Analysis of nine drugs and their cytochrome P450-specific probe metabolites from urine by liquid chromatography–tandem mass spectrometry utilizing sub 2 μm particle size column

Aleksanteri Petsalo; Miia Turpeinen; Olavi Pelkonen; Ari Tolonen

An LC/MS/MS method was developed for the analysis of twelve cytochrome P450 (CYP)-specific probe metabolites and their nine parent drugs from human urine. CYP-specific metabolites of melatonin (CYP1A2), nicotine (CYP2A6), bupropion (CYP2B6), repaglinide (CYP2C8), losartan (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A4) were all analyzed using the same LC/MS/MS method with a single analytical run, either after a one-at-a-time dose or cocktail-type dosing of the parent drugs. Ultra performance liquid chromatography (UPLC) with a 1.7 microm particle size column was utilized, providing 1.5-3-fold increase in sensitivity, decrease of analysis time to one third and clearly better chromatographic peak shapes when comparing it with the method using traditional high performance liquid chromatography for the same metabolites. In addition, the method was applied for the analysis of the metabolites from human urine samples collected at multiple time points after single and N-in-one dosing of each of the drugs, showing that the use of both the analytical method and these probe metabolites as CYP-specific markers is feasible in in vivo drug-drug interaction or phenotyping studies.


Xenobiotica | 2010

Rapid screening of commercially available herbal products for the inhibition of major human hepatic cytochrome P450 enzymes using the N-in-one cocktail

Danielle Sevior; J. Hokkanen; Ari Tolonen; Khaled Abass; L. Tursas; Olavi Pelkonen; Jorma T. Ahokas

Self-administration of complementary products concurrently with conventional medication is increasingly common. The potential for cytochrome P450 (CYP) inhibition requires investigation. The N-in-one assay with ten probe substrates for nine CYPs was used with human liver microsomes to investigate ten products. CYP inhibition was measured in a single liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis. Estimated IC50-values were determined for the extracts that produced significant inhibition (less than 100 μg ml−1). Inhibition of CYP2C19 by dong quai (IC50 = 13.7–14.3 μg ml−1 for the methanolic extract) and CYP2D6 by goldenseal (IC50 = 6.7 and 6.3 μg ml−1 for the aqueous and methanolic extracts, respectively), are of particular concern as the potential for adverse interactions is high. The inhibition of CYP2C8 by horsetail (IC50 = 93 μg ml−1 for the aqueous extract) requires further investigation, as the potential for concurrent use with products that require CYP2C8 for metabolism is significant. CYP3A4 inhibition varied depending on the probe reaction being monitored. The earlier reported findings of inhibition by black cohosh, goldenseal and gotu kola were confirmed. The present work has shown that the N-in-one cocktail is a rapid and reliable method that can be used as an initial screen to help prioritize products that require more detailed investigations and it can also be applied to monitor product variability.


European Journal of Plant Pathology | 2009

Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress

Janne J. Koskimäki; Juho Hokkanen; Laura Jaakola; Marja Suorsa; Ari Tolonen; Sampo Mattila; Anna Maria Pirttilä; Anja Hohtola

Bilberry (Vaccinium myrtillus) represents one of the richest flavonoid sources among plants. Flavonoids play variable, species-dependent roles in plant defences. In bilberry, flavonoid metabolism is activated in response to solar radiation but not against mechanical injury. In this paper, the defence reaction and biosynthesis of phenolic compounds of bilberry was studied after infection by a fungal endophyte (Paraphaeosphaeria sp.) and a pathogen (Botrytis cinerea). The defence response of bilberry was faster against the endophyte than the pathogen. All flavonoid biosynthesis genes tested were activated by each infection. Biosynthesis and accumulation of phenolic acids, flavan-3-ols and oligomeric proanthocyanidins were clearly elevated in both infected samples. Infection by the pathogen promoted specifically accumulation of epigallocatechin, quercetin-3-glucoside, quercetin-3-O-α-rhamnoside, quercetin-3-O-(4”-HMG)-R-rhamnoside, chlorogenic acid and coumaroyl quinic acid. The endophyte-infected plants had a higher content of quercetin-3-glucuronide and coumaroyl iridoid. Therefore, accumulation of individual phenolic compounds could be specific for each infection. Quantity of insoluble proanthocyanidins was the highest in control plants, suggesting that they might act as storage compounds and become activated by degradation upon infection.


Current Eye Research | 2012

The Cytotoxic Effects of Preserved and Preservative-Free Prostaglandin Analogs on Human Corneal and Conjunctival Epithelium In Vitro and the Distribution of Benzalkonium Chloride Homologs in Ocular Surface Tissues In Vivo

Pertti Pellinen; Anne Huhtala; Ari Tolonen; Jukka Lokkila; Jukka Mäenpää; Hannu Uusitalo

Purpose: To investigate the cytotoxicity of benzalkonium chloride (BAC)-containing ophthalmic solutions of prostaglandin analogs (latanoprost, travoprost, bimatoprost, and preservative-free (PF) tafluprost), BAC mixture (BACmix) and BAC homologs with different alkyl chain lengths using human corneal epithelial (HCE) and conjunctival epithelial (IOBA-NHC) cell cultures. The distribution of BAC homologs in rabbit ocular surface tissues in vivo was examined. Methods: The cells were exposed for one hour to prostaglandin analogs, BACmix and three homologs. Cytotoxicity was assessed with the WST-1 and lactate dehydrogenase (LDH) assays for cellular viability and cell membrane integrity. BAC 0.02% solution was instilled on the rabbit eye daily for 14 days and the concentrations of BAC homologs in external ocular tissues were determined. Results: The order of decreasing cytotoxicity in the WST-1 test was latanoprost ≥ travoprost > bimatoprost ≥ PF tafluprost. IOBA-NHC cells were more sensitive than HCE cells. In HCE, only latanoprost diluted to 10% increased LDH leakage. In IOBA-NHC, LDH leakage was statistically significant with 3–10% travoprost and 10% latanoprost. The order of decreasing cytotoxicity of preservatives was C14 > C12 > BACmix > C16 in HCE and C12 > C14 > BACmix > C16 in IOBA-NHC. Following treatment with BAC 0.02% solution, the amounts of BAC-C12, -C14 and -C16 in rabbit cornea and conjunctiva, respectively were: 0.37 ± 0.08 and 2.64 ± 0.27 ng/mg; 0.42 ± 0.07 and 4.77 ± 0.43 ng/mg; 0.04 ± 0.01 and 0.54 ± 0.05 ng/mg. Conclusions: The cytotoxic effects of latanoprost, travoprost, and bimatoprost were dependent on the BAC concentration in their formulations. BACmix was cytotoxic at the concentrations above those corresponding to 0.001% BAC in ophthalmic medications. PF tafluprost was the least toxic of the drugs tested. Within studied BAC homologs, those with longer alkyl chain and higher lipophility penetrated effectively into rabbit external ocular tissues.


Drug Metabolism and Disposition | 2007

Timolol Metabolism in Human Liver Microsomes Is Mediated Principally by CYP2D6

Marjo Volotinen; Miia Turpeinen; Ari Tolonen; Jouko Uusitalo; Jukka Mäenpää; Olavi Pelkonen

Timolol has mainly been used topically for the treatment of glaucoma. It has been suggested that the drug is metabolized by cytochrome P450 CYP2D6. The matter has not, however, been extensively studied. The aim here was to tentatively identify timolol metabolites and to determine the P450-associated metabolic and interaction properties of timolol in vitro. Four metabolites were identified, the most abundant being a hydroxy metabolite, M1. The Km value for the formation of M1 was 23.8 μM in human liver microsomes. Metabolism of timolol with recombinant P450s and correlation analysis have confirmed the conception that the drug is metabolized principally by CYP2D6, CYP2C19 being only a minor contributor (<10%) to the intrinsic microsomal clearance. The CYP2D6 inhibitor quinidine proved a potent competitive inhibitor of timolol metabolism, with an in vitro Ki value of 0.08 μM. Fluvoxamine, an inhibitor of CYP2C19, inhibited timolol metabolism to a lesser extent, confirming its minor contribution. Timolol itself did not inhibit CYP2D6-catalyzed dextromethorphan O-demethylation. Judging from the disappearance of timolol in human liver homogenate, the in vivo half-life was extrapolated to be about 3 h, an estimate close to the half-life of about 2 to 5 h observed in vivo. In conclusion, the inhibition of timolol metabolism by quinidine should be taken into account when patients are treated with timolol. However, when plasma timolol concentrations in patients remain low (≤0.2 μg/l), it is suggested that such interaction is of minor clinical relevance.

Collaboration


Dive into the Ari Tolonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge