Anja Kolb-Kokocinski
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja Kolb-Kokocinski.
Nature | 2012
Aylwyn Scally; Julien Y. Dutheil; LaDeana W. Hillier; Gregory Jordan; Ian Goodhead; Javier Herrero; Asger Hobolth; Tuuli Lappalainen; Thomas Mailund; Tomas Marques-Bonet; Shane McCarthy; Stephen H. Montgomery; Petra C. Schwalie; Y. Amy Tang; Michelle C. Ward; Yali Xue; Bryndis Yngvadottir; Can Alkan; Lars Nørvang Andersen; Qasim Ayub; Edward V. Ball; Kathryn Beal; Brenda J. Bradley; Yuan Chen; Chris Clee; Stephen Fitzgerald; Tina Graves; Yong Gu; Paul Heath; Andreas Heger
Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human–chimpanzee and human–chimpanzee–gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.
Proceedings of the National Academy of Sciences of the United States of America | 2007
John E. Pimanda; Katrin Ottersbach; Kathy Knezevic; Sarah Kinston; Wan Y I Chan; Nicola K. Wilson; Josette Renée Landry; Andrew Wood; Anja Kolb-Kokocinski; Anthony R. Green; David Tannahill; Georges Lacaud; Valerie Kouskoff; Berthold Göttgens
Conservation of the vertebrate body plan has been attributed to the evolutionary stability of gene-regulatory networks (GRNs). We describe a regulatory circuit made up of Gata2, Fli1, and Scl/Tal1 and their enhancers, Gata2-3, Fli1+12, and Scl+19, that operates during specification of hematopoiesis in the mouse embryo. We show that the Fli1+12 enhancer, like the Gata2-3 and Scl+19 enhancers, targets hematopoietic stem cells (HSCs) and relies on a combination of Ets, Gata, and E-Box motifs. We show that the Gata2-3 enhancer also uses a similar cluster of motifs and that Gata2, Fli1, and Scl are expressed in embryonic day-11.5 dorsal aorta where HSCs originate and in fetal liver where they multiply. The three HSC enhancers in these tissues and in ES cell-derived hemangioblast equivalents are bound by each of these transcription factors (TFs) and form a fully connected triad that constitutes a previously undescribed example of both this network motif in mammalian development and a GRN kernel operating during the specification of a mammalian stem cell.
Genome Biology | 2007
Darren Schofield; Anthony Richard Pope; Veronica Clementel; Jenny Buckell; Susan Dj Chapple; Kay Clarke; Jennie S. Conquer; Anna M. Crofts; Sandra R.E. Crowther; Michael R. Dyson; Gillian Flack; Gareth J. Griffin; Yvette Hooks; William J. Howat; Anja Kolb-Kokocinski; Susan Kunze; Cecile D. Martin; Gareth Maslen; Joanne N. Mitchell; Maureen O'Sullivan; Rajika L. Perera; Wendy Roake; S Paul Shadbolt; Karen Vincent; Anthony Warford; Wendy E. Wilson; Jane Xie; Joyce L. Young; John McCafferty
We have created a high quality phage display library containing over 1010 human antibodies and describe its use in the generation of antibodies on an unprecedented scale. We have selected, screened and sequenced over 38,000 recombinant antibodies to 292 antigens, yielding over 7,200 unique clones. 4,400 antibodies were characterized by specificity testing and detailed sequence analysis and the data/clones are available online. Sensitive detection was demonstrated in a bead based flow cytometry assay. Furthermore, positive staining by immunohistochemistry on tissue microarrays was found for 37% (143/381) of antibodies. Thus, we have demonstrated the potential of and illuminated the issues associated with genome-wide monoclonal antibody generation.
Nature | 2017
Helena Kilpinen; Angela Goncalves; Andreas Leha; Vackar Afzal; Kaur Alasoo; Sofie Ashford; Sendu Bala; Dalila Bensaddek; Francesco Paolo Casale; Oliver J. Culley; Petr Danecek; Adam Faulconbridge; Peter W. Harrison; Annie Kathuria; Davis J. McCarthy; Shane McCarthy; Ruta Meleckyte; Yasin Memari; Nathalie Moens; Filipa Soares; Alice L. Mann; Ian Streeter; Chukwuma A. Agu; Alex Alderton; Rachel Nelson; Sarah Harper; Minal Patel; Alistair White; Sharad R Patel; Laura Clarke
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5–46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Nature Communications | 2016
Lindsey Van Haute; Sabine Dietmann; Laura S. Kremer; Shobbir Hussain; Sarah F. Pearce; Christopher A. Powell; Joanna Rorbach; Rebecca Lantaff; Sandra Blanco; Sascha Sauer; Urania Kotzaeridou; Georg F. Hoffmann; Yasin Memari; Anja Kolb-Kokocinski; Richard Durbin; Johannes A. Mayr; Michaela Frye; Holger Prokisch; Michal Minczuk
Epitranscriptome modifications are required for structure and function of RNA and defects in these pathways have been associated with human disease. Here we identify the RNA target for the previously uncharacterized 5-methylcytosine (m5C) methyltransferase NSun3 and link m5C RNA modifications with energy metabolism. Using whole-exome sequencing, we identified loss-of-function mutations in NSUN3 in a patient presenting with combined mitochondrial respiratory chain complex deficiency. Patient-derived fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. We show that NSun3 is required for deposition of m5C at the anticodon loop in the mitochondrially encoded transfer RNA methionine (mt-tRNAMet). Further, we demonstrate that m5C deficiency in mt-tRNAMet results in the lack of 5-formylcytosine (f5C) at the same tRNA position. Our findings demonstrate that NSUN3 is necessary for efficient mitochondrial translation and reveal that f5C in human mitochondrial RNA is generated by oxidative processing of m5C.
Blood | 2008
John E. Pimanda; Wan Y I Chan; Nicola K. Wilson; Aileen M. Smith; Sarah Kinston; Kathy Knezevic; Mary E. Janes; Josette Renée Landry; Anja Kolb-Kokocinski; Jonathan Frampton; David Tannahill; Katrin Ottersbach; George A. Follows; Georges Lacaud; Valerie Kouskoff; Berthold Göttgens
Endoglin is an accessory receptor for TGF-beta signaling and is required for normal hemangioblast, early hematopoietic, and vascular development. We have previously shown that an upstream enhancer, Eng -8, together with the promoter region, mediates robust endothelial expression yet is inactive in blood. To identify hematopoietic regulatory elements, we used array-based methods to determine chromatin accessibility across the entire locus. Subsequent transgenic analysis of candidate elements showed that an endothelial enhancer at Eng +9 when combined with an element at Eng +7 functions as a strong hemato-endothelial enhancer. Chromatin immunoprecipitation (ChIP)-chip analysis demonstrated specific binding of Ets factors to the promoter as well as to the -8, +7+9 enhancers in both blood and endothelial cells. By contrast Pu.1, an Ets factor specific to the blood lineage, and Gata2 binding was only detected in blood. Gata2 was bound only at +7 and GATA motifs were required for hematopoietic activity. This modular assembly of regulators gives blood and endothelial cells the regulatory freedom to independently fine-tune gene expression and emphasizes the role of regulatory divergence in driving functional divergence.
American Journal of Respiratory Cell and Molecular Biology | 2015
Adrien Frommer; Rim Hjeij; Niki T. Loges; Christine Edelbusch; Charlotte Jahnke; Johanna Raidt; Claudius Werner; Julia Wallmeier; Jörg Große-Onnebrink; Heike Olbrich; Sandra Cindrić; Martine Jaspers; Mieke Boon; Yasin Memari; Richard Durbin; Anja Kolb-Kokocinski; Sascha Sauer; June K. Marthin; Kim G. Nielsen; Israel Amirav; Nael Elias; Eitan Kerem; David Shoseyov; Karsten Haeffner; Heymut Omran
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder caused by several distinct defects in genes responsible for ciliary beating, leading to defective mucociliary clearance often associated with randomization of left/right body asymmetry. Individuals with PCD caused by defective radial spoke (RS) heads are difficult to diagnose owing to lack of gross ultrastructural defects and absence of situs inversus. Thus far, most mutations identified in human radial spoke genes (RSPH) are loss-of-function mutations, and missense variants have been rarely described. We studied the consequences of different RSPH9, RSPH4A, and RSPH1 mutations on the assembly of the RS complex to improve diagnostics in PCD. We report 21 individuals with PCD (16 families) with biallelic mutations in RSPH9, RSPH4A, and RSPH1, including seven novel mutations comprising missense variants, and performed high-resolution immunofluorescence analysis of human respiratory cilia. Missense variants are frequent genetic defects in PCD with RS defects. Absence of RSPH4A due to mutations in RSPH4A results in deficient axonemal assembly of the RS head components RSPH1 and RSPH9. RSPH1 mutant cilia, lacking RSPH1, fail to assemble RSPH9, whereas RSPH9 mutations result in axonemal absence of RSPH9, but do not affect the assembly of the other head proteins, RSPH1 and RSPH4A. Interestingly, our results were identical in individuals carrying loss-of-function mutations, missense variants, or one amino acid deletion. Immunofluorescence analysis can improve diagnosis of PCD in patients with loss-of-function mutations as well as missense variants. RSPH4A is the core protein of the RS head.
Annals of clinical and translational neurology | 2015
Tobias B. Haack; Christopher B. Jackson; Kei Murayama; Laura S. Kremer; André Schaller; Urania Kotzaeridou; Maaike C. de Vries; Gudrun Schottmann; Saikat Santra; Boriana Büchner; Thomas Wieland; Elisabeth Graf; Peter Freisinger; Seila Eggimann; Akira Ohtake; Yasushi Okazaki; Masakazu Kohda; Yoshihito Kishita; Yoshimi Tokuzawa; Sascha Sauer; Yasin Memari; Anja Kolb-Kokocinski; Richard Durbin; Oswald Hasselmann; Kirsten Cremer; Beate Albrecht; Dagmar Wieczorek; Hartmut Engels; Dagmar Hahn; Alexander M. Zink
Short‐chain enoyl‐CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal‐recessive ECHS1 deficiency.
American Journal of Respiratory Cell and Molecular Biology | 2016
Gerard W. Dougherty; Niki T. Loges; Judith A. Klinkenbusch; Heike Olbrich; Petra Pennekamp; Tabea Menchen; Johanna Raidt; Julia Wallmeier; Claudius Werner; Cordula Westermann; Christian Ruckert; Virginia Mirra; Rim Hjeij; Yasin Memari; Richard Durbin; Anja Kolb-Kokocinski; Kavita Praveen; Mohammad Amin Kashef; Sara Kashef; Fardin Eghtedari; Karsten Häffner; Pekka Valmari; György Baktai; Micha Aviram; Lea Bentur; Israel Amirav; Erica E. Davis; Nicholas Katsanis; Martina Brueckner; Artem Shaposhnykov
Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.
Molecular and Cellular Biology | 2011
Kathy Knezevic; Thomas Bee; Nicola K. Wilson; Mary E. Janes; Sarah Kinston; S. Polderdijk; Anja Kolb-Kokocinski; Katrin Ottersbach; Niv Pencovich; Yoram Groner; M de Bruijn; Berthold Göttgens; John E. Pimanda
ABSTRACT The oncogenic transcription factor Runx1 is required for the specification of definitive hematopoietic stem cells (HSC) in the developing embryo. The activity of this master regulator is tightly controlled during development. The transcription factors that upregulate the expression of Runx1 also upregulate the expression of Smad6, the inhibitory Smad, which controls Runx1 activity by targeting it to the proteasome. Here we show that Runx1, in conjunction with Fli1, Gata2, and Scl, directly regulates the expression of Smad6 in the aorta-gonad-mesonephros (AGM) region in the developing embryo, where HSCs originate. Runx1 regulates Smad6 activity via a novel upstream enhancer, and Runx1 null embryos show reduced Smad6 transcripts in the yolk-sac and c-Kit-positive fetal liver cells. By directly regulating the expression of Smad6, Runx1 sets up a functional rheostat to control its own activity. The perturbation of this rheostat, using a proteasomal inhibitor, results in an increase in Runx1 and Smad6 levels that can be directly attributed to increased Runx1 binding to tissue-specific regulatory elements of these genes. Taken together, we describe a scenario in which a key hematopoietic transcription factor controls its own expression levels by transcriptionally controlling its controller.