Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anja T. Fuglsang is active.

Publication


Featured researches published by Anja T. Fuglsang.


Plant Physiology | 2007

Root Plasma Membrane Transporters Controlling K+/Na+ Homeostasis in Salt-Stressed Barley

Zhong-Hua Chen; Igor Pottosin; Tracey Ann Cuin; Anja T. Fuglsang; Mark Tester; Deepa Jha; Isaac Zepeda-Jazo; Meixue Zhou; Michael G. Palmgren; Ia Newman; Sergey Shabala

Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H+ pump activity; (3) better ability of root cells to pump Na+ from the cytosol to the external medium; and (4) higher sensitivity to supplemental Ca2+. At the same time, no significant difference was found between contrasting cultivars in their unidirectional 22Na+ influx or in the density and voltage dependence of depolarization-activated outward-rectifying K+ channels. Overall, our results are consistent with the idea of the cytosolic K+-to-Na+ ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants.


Journal of Biological Chemistry | 1999

Binding of 14-3-3 Protein to the Plasma Membrane H+-ATPase AHA2 Involves the Three C-terminal Residues Tyr946-Thr-Val and Requires Phosphorylation of Thr947

Anja T. Fuglsang; Sabina Visconti; Katrine Drumm; Thomas P. Jahn; Allan Stensballe; Benedetta Mattei; Ole N. Jensen; Patrizia Aducci; Michael G. Palmgren

14-3-3 proteins play a regulatory role in a diverse array of cellular functions such as apoptosis, regulation of the cell cycle, and regulation of gene transcription. The phytotoxin fusicoccin specifically induces association of virtually any 14-3-3 protein to plant plasma membrane H+-ATPase. The 14-3-3 binding site in the Arabidopsis plasma membrane H+-ATPase AHA2 was localized to the three C-terminal residues of the enzyme (Tyr946-Thr-Val). Binding of 14-3-3 protein to this target was induced by phosphorylation of Thr947 (KD = 88 nm) and was in practice irreversible in the presence of fusicoccin (KD = 7 nm). Mass spectrometry analysis demonstrated that AHA2 expressed in yeast was phosphorylated at Thr947. We conclude that the extreme end of AHA2 contains an unusual high-affinity binding site for 14-3-3 protein.


The Plant Cell | 2007

Arabidopsis protein kinase PKS5 inhibits the plasma membrane H +-ATPase by preventing interaction with 14-3-3 protein

Anja T. Fuglsang; Yan Guo; Tracey Ann Cuin; Quansheng Qiu; Chun-Peng Song; Kim A. Kristiansen; Katrine Bych; Alexander Schulz; Sergey Shabala; Karen S. Schumaker; Michael G. Palmgren; Jian-Kang Zhu

Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an Arabidopsis thaliana Ser/Thr protein kinase, PKS5, is a negative regulator of the plasma membrane proton pump (PM H+-ATPase). Loss-of-function pks5 mutant plants are more tolerant of high external pH due to extrusion of protons to the extracellular space. PKS5 phosphorylates the PM H+-ATPase AHA2 at a novel site, Ser-931, in the C-terminal regulatory domain. Phosphorylation at this site inhibits interaction between the PM H+-ATPase and an activating 14-3-3 protein in a yeast expression system. We show that PKS5 interacts with the calcium binding protein SCaBP1 and that high external pH can trigger an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM H+-ATPase regulation.


The Plant Cell | 1997

The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase.

Thomas P. Jahn; Anja T. Fuglsang; Anne Olsson; Ines Maria Bruntrup; David B. Collinge; Dieter Volkmann; Marianne Sommarin; Michael G. Palmgren; Christer Larsson

Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2 plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase.


Molecular & Cellular Proteomics | 2007

Temporal Analysis of Sucrose-induced Phosphorylation Changes in Plasma Membrane Proteins of Arabidopsis

Totte Niittylä; Anja T. Fuglsang; Michael G. Palmgren; Wolf B. Frommer; Waltraud X. Schulze

Sucrose is the main product of photosynthesis and the most common transport form of carbon in plants. In addition, sucrose is a compound that serves as a signal affecting metabolic flux and development. Here we provide first results of externally induced phosphorylation changes of plasma membrane proteins in Arabidopsis. In an unbiased approach, seedlings were grown in liquid medium with sucrose and then depleted of carbon before sucrose was resupplied. Plasma membranes were purified, and phosphopeptides were enriched and subsequently analyzed quantitatively by mass spectrometry. In total, 67 phosphopeptides were identified, most of which were quantified over five time points of sucrose resupply. Among the identified phosphorylation sites, the well described phosphorylation site at the C terminus of plasma membrane H+-ATPases showed a relative increase in phosphorylation level in response to sucrose. This corresponded to a significant increase of proton pumping activity of plasma membrane vesicles from sucrose-supplied seedlings. A new phosphorylation site was identified in the plasma membrane H+-ATPase AHA1 and/or AHA2. This phosphorylation site was shown to be crucial for ATPase activity and overrode regulation via the well known C-terminal phosphorylation site. Novel phosphorylation sites were identified for both receptor kinases and cytosolic kinases that showed rapid increases in relative intensities after short times of sucrose treatment. Seven response classes were identified including non-responsive, rapid increase (within 3 min), slow increase, and rapid decrease. Relative quantification of phosphorylation changes by phosphoproteomics provides a means for identification of fast responses to external stimuli in plants as a basis for further functional characterization.


PLOS Biology | 2009

RIN4 Functions with Plasma Membrane H+-ATPases to Regulate Stomatal Apertures during Pathogen Attack

Jun Liu; James Mitch Elmore; Anja T. Fuglsang; Michael G. Palmgren; Brian J. Staskawicz; Gitta Coaker

In plants, the protein Rin4 acts with the plasma membrane H+-ATPase to regulate pathogen entry and the innate immune response, in part, through the regulation of stomatal closure.


Plant Physiology | 2008

Manganese Efficiency in Barley: Identification and Characterization of the Metal Ion Transporter HvIRT1

Pai Pedas; Cecilie K. Ytting; Anja T. Fuglsang; Thomas Jahn; Jan K. Schjoerring; Søren Husted

Manganese (Mn) deficiency is an important plant nutritional disorder in many parts of the world. Barley (Hordeum vulgare) genotypes differ considerably in their ability to grow in soils with low Mn2+ availability. Differential genotypic Mn efficiency can be attributed to differences in Mn2+ uptake kinetics in the low nanomolar concentration range. However, the molecular basis for these differences has not yet been clarified. We present here the identification and characterization of the first barley gene encoding a plasma membrane-localized metal transport protein able to transport Mn2+. The gene is designated HvIRT1 (for IRON-REGULATED TRANSPORTER1) because it belongs to the ZIP gene family and has a high similarity to rice (Oryza sativa) OsIRT1. A novel yeast uptake assay based on inductively coupled plasma-mass spectrometry analysis of 31 different metal and metalloid ions showed that the HvIRT1 protein, in addition to Mn2+, also transported Fe2+/Fe3+, Zn2+, and Cd2+. Both Mn and iron deficiency induced an up-regulation of HvIRT1 in two barley genotypes differing in Mn efficiency, but the expression levels in all cases were highest (up to 40%) in the Mn-efficient genotype. The higher expression of HvIRT1 correlated with an increased Mn2+ uptake rate. We conclude that HvIRT1 is an important component controlling Mn2+ uptake in barley roots and contributes to genotypic differences in Mn2+ uptake kinetics.


Plant Molecular Biology | 2007

The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

Michael Krogh Jensen; Jesper Henrik Rung; Per L. Gregersen; Torben Gjetting; Anja T. Fuglsang; Michael Hansen; Nina Joehnk; Michael F. Lyngkjær; David B. Collinge

Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5′-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells towards virulent Bgh. Complementing the effect of HvNAC6 gene silencing, transient overexpression of HvNAC6 increases the occurrence of penetration resistant cells towards Bgh attack. Quantitative RT-PCR shows the early and transient induction of HvNAC6 in barley epidermis upon Bgh infection. Additionally, our results show that the Arabidopsis HvNAC6 homologue ATAF1 is also induced by Bgh and the ataf1-1 mutant line shows decreased penetration resistance to this non-host pathogen. Collectively, these data suggest a conserved role of HvNAC6 and ATAF1 in the regulation of penetration resistance in monocots and dicots, respectively.


The Plant Cell | 2010

The Arabidopsis Chaperone J3 Regulates the Plasma Membrane H+-ATPase through Interaction with the PKS5 Kinase

Yongqing Yang; Yunxia Qin; Chang Gen Xie; Feiyi Zhao; Jinfeng Zhao; Dafa Liu; Shou-Yi Chen; Anja T. Fuglsang; Michael G. Palmgren; Karen S. Schumaker; Xing Wang Deng; Yan Guo

This work examines the effect of a DnaJ homolog, Arabidopsis J3, on the activity of the plasma membrane H+-ATPase, showing that J3 affects activity of the ATPase by direct interaction with and inactivation of a repressor protein kinase, Salt Overly Sensitive2-Like Protein Kinase5. The plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H+-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H+-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H+-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H+-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H+-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H+-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.


Plant Cell and Environment | 2009

Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin.

Nicola Tomasi; Tobias Kretzschmar; Luca Espen; Laure Weisskopf; Anja T. Fuglsang; Michael G. Palmgren; Günter Neumann; Zeno Varanini; Roberto Pinton; Enrico Martinoia; Stefano Cesco

White lupin (Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.

Collaboration


Dive into the Anja T. Fuglsang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juanying Ye

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Ole Nørregaard Jensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Nielsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge