Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael G. Palmgren is active.

Publication


Featured researches published by Michael G. Palmgren.


Trends in Plant Science | 2002

A long way ahead: understanding and engineering plant metal accumulation

Stephan Clemens; Michael G. Palmgren; Ute Krämer

Some plants can hyperaccumulate metal ions that are toxic to virtually all other organisms at low dosages. This trait could be used to clean up metal-contaminated soils. Moreover, the accumulation of heavy metals by plants determines both the micronutrient content and the toxic metal content of our food. Complex interactions of transport and chelating activities control the rates of metal uptake and storage. In recent years, several key steps have been identified at the molecular level, enabling us to initiate transgenic approaches to engineer the transition metal content of plants.


Journal of Molecular Evolution | 1998

Evolution of substrate specificities in the P-type ATPase superfamily

Kristian B. Axelsen; Michael G. Palmgren

Abstract. P-type ATPases make up a large superfamily of ATP-driven pumps involved in the transmembrane transport of charged substrates. We have performed an analysis of conserved core sequences in 159 P-type ATPases. The various ATPases group together in five major branches according to substrate specificity, and not according to the evolutionary relationship of the parental species, indicating that invention of new substrate specificities is accompanied by abrupt changes in the rate of sequence evolution. A hitherto-unrecognized family of P-type ATPases has been identified that is expected to be represented in all the major phyla of eukarya.


The Plant Cell | 1999

Energization of Plant Cell Membranes by H+-Pumping ATPases: Regulation and Biosynthesis

Heven Sze; Xuhang Li; Michael G. Palmgren

The circulation of ions across biological membranes is a fundamental process of cellular energetics ([Harold, 1986][1]). Indeed, ion currents play the key role in energy capture during respiration and photosynthesis. They mediate the interconversion of chemical, osmotic, and electrical forms of


Annual review of biophysics | 2011

P-Type ATPases

Michael G. Palmgren; Poul Nissen

P-type ATPases form a large superfamily of cation and lipid pumps. They are remarkably simple with only a single catalytic subunit and carry out large domain motions during transport. The atomic structure of P-type ATPases in different conformations, together with ample mutagenesis evidence, has provided detailed insights into the pumping mechanism by these biological nanomachines. Phylogenetically, P-type ATPases are divided into five subfamilies, P1-P5. These subfamilies differ with respect to transported ligands and the way they are regulated.


Plant Physiology | 2007

Root Plasma Membrane Transporters Controlling K+/Na+ Homeostasis in Salt-Stressed Barley

Zhong-Hua Chen; Igor Pottosin; Tracey Ann Cuin; Anja T. Fuglsang; Mark Tester; Deepa Jha; Isaac Zepeda-Jazo; Meixue Zhou; Michael G. Palmgren; Ia Newman; Sergey Shabala

Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H+ pump activity; (3) better ability of root cells to pump Na+ from the cytosol to the external medium; and (4) higher sensitivity to supplemental Ca2+. At the same time, no significant difference was found between contrasting cultivars in their unidirectional 22Na+ influx or in the density and voltage dependence of depolarization-activated outward-rectifying K+ channels. Overall, our results are consistent with the idea of the cytosolic K+-to-Na+ ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants.


Trends in Plant Science | 2008

Zinc biofortification of cereals: problems and solutions

Michael G. Palmgren; Stephan Clemens; Lorraine E. Williams; Ute Krämer; Søren Borg; Jan K. Schjørring; Dale Sanders

The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and--in cereals--the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals.


FEBS Letters | 2007

Plant proton pumps

Roberto A. Gaxiola; Michael G. Palmgren; Karin Schumacher

Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react to their constantly changing environments and at the same time maintain optimal metabolic conditions, the expression, activity and interplay of the pumps generating these H+ gradients have to be tightly regulated. In this review, we will highlight results on the regulation, localization and physiological roles of these H+‐ pumps, namely the plasma membrane H+‐ATPase, the vacuolar H+‐ATPase and the vacuolar H+‐PPase.


Nature | 2007

Crystal structure of a plasma membrane proton pump

Michael G. Palmgren; Morten J. Buch-Pedersen; Bjørn Pañella Pedersen; Poul Nissen

A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium–potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.


Journal of Biological Chemistry | 1999

Binding of 14-3-3 Protein to the Plasma Membrane H+-ATPase AHA2 Involves the Three C-terminal Residues Tyr946-Thr-Val and Requires Phosphorylation of Thr947

Anja T. Fuglsang; Sabina Visconti; Katrine Drumm; Thomas P. Jahn; Allan Stensballe; Benedetta Mattei; Ole N. Jensen; Patrizia Aducci; Michael G. Palmgren

14-3-3 proteins play a regulatory role in a diverse array of cellular functions such as apoptosis, regulation of the cell cycle, and regulation of gene transcription. The phytotoxin fusicoccin specifically induces association of virtually any 14-3-3 protein to plant plasma membrane H+-ATPase. The 14-3-3 binding site in the Arabidopsis plasma membrane H+-ATPase AHA2 was localized to the three C-terminal residues of the enzyme (Tyr946-Thr-Val). Binding of 14-3-3 protein to this target was induced by phosphorylation of Thr947 (KD = 88 nm) and was in practice irreversible in the presence of fusicoccin (KD = 7 nm). Mass spectrometry analysis demonstrated that AHA2 expressed in yeast was phosphorylated at Thr947. We conclude that the extreme end of AHA2 contains an unusual high-affinity binding site for 14-3-3 protein.


Plant Physiology | 2003

Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice

Ivan Baxter; Jason Tchieu; Michael R. Sussman; Marc Boutry; Michael G. Palmgren; Michael Gribskov; Jeffrey F. Harper; Kristian B. Axelsen

Members of the P-type ATPase ion pump superfamily are found in all three branches of life. Forty-six P-type ATPase genes were identified in Arabidopsis, the largest number yet identified in any organism. The recent completion of two draft sequences of the rice (Oryza sativa) genome allows for comparison of the full complement of P-type ATPases in two different plant species. Here, we identify a similar number (43) in rice, despite the rice genome being more than three times the size of Arabidopsis. The similarly large families suggest that both dicots and monocots have evolved with a large preexisting repertoire of P-type ATPases. Both Arabidopsis and rice have representative members in all five major subfamilies of P-type ATPases: heavy-metal ATPases (P1B), Ca2+-ATPases (endoplasmic reticulum-type Ca2+-ATPase and autoinhibited Ca2+-ATPase, P2A and P2B), H+-ATPases (autoinhibited H+-ATPase, P3A), putative aminophospholipid ATPases (ALA, P4), and a branch with unknown specificity (P5). The close pairing of similar isoforms in rice and Arabidopsis suggests potential orthologous relationships for all 43 rice P-type ATPases. A phylogenetic comparison of protein sequences and intron positions indicates that the common angiosperm ancestor had at least 23 P-type ATPases. Although little is known about unique and common features of related pumps, clear differences between some members of the calcium pumps indicate that evolutionarily conserved clusters may distinguish pumps with either different subcellular locations or biochemical functions.

Collaboration


Dive into the Michael G. Palmgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristian B. Axelsen

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Kees Venema

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge