Anja Thalhammer
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anja Thalhammer.
Biochemical Society Transactions | 2012
Dirk K. Hincha; Anja Thalhammer
LEA (late embryogenesis abundant) proteins were originally described almost 30 years ago as accumulating late in plant seed development. They were later found to be induced in vegetative plant tissues under environmental stress conditions and also in desiccation-tolerant micro-organisms and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Most LEA proteins are predicted to be intrinsically disordered and this has been experimentally verified in several cases. In addition, some LEA proteins partially fold, mainly into α-helices, during drying or in the presence of membranes. Recent studies have concentrated on the potential roles of LEA proteins in stabilizing membranes or sensitive enzymes during freezing or drying, and the present review concentrates on these two possible functions of LEA proteins in cellular dehydration tolerance.
Biochimica et Biophysica Acta | 2010
Anja Thalhammer; Michaela Hundertmark; Antoaneta V. Popova; Robert Seckler; Dirk K. Hincha
COR15A and COR15B form a tandem repeat of highly homologous genes in Arabidopsis thaliana. Both genes are highly cold induced and the encoded proteins belong to the Pfam LEA_4 group (group 3) of the late embryogenesis abundant (LEA) proteins. Both proteins were predicted to be intrinsically disordered in solution. Only COR15A has previously been characterized and it was shown to be localized in the soluble stroma fraction of chloroplasts. Ectopic expression of COR15A in Arabidopsis resulted in increased freezing tolerance of both chloroplasts after freezing and thawing of intact leaves and of isolated protoplasts frozen and thawed in vitro. In the present study we have generated recombinant mature COR15A and COR15B for a comparative study of their structure and possible function as membrane protectants. CD spectroscopy showed that both proteins are predominantly unstructured in solution and mainly alpha-helical after drying. Both proteins showed similar effects on the thermotropic phase behavior of dry liposomes. A decrease in the gel to liquid-crystalline phase transition temperature depended on both the unsaturation of the fatty acyl chains and lipid headgroup structure. FTIR spectroscopy indicated no strong interactions between the proteins and the lipid phosphate and carbonyl groups, but significant interactions with the galactose headgroup of the chloroplast lipid monogalactosyldiacylglycerol. These findings were rationalized by modeling the secondary structure of COR15A and COR15B. Helical wheel projection indicated the presence of amphipathic alpha-helices in both proteins. The helices lacked a clear separation of positive and negative charges on the hydrophilic face, but contained several hydroxylated amino acids.
Plant Physiology | 2014
Anja Thalhammer; Gary Bryant; Ronan Sulpice; Dirk K. Hincha
Cold-induced, unstructured chloroplast proteins increase plant freezing tolerance by stabilizing membranes, but not enzymes, through folding and binding. Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic α-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins.
Methods of Molecular Biology | 2014
Anja Thalhammer; Dirk K. Hincha; Ellen Zuther
Quantitative assessment of freezing tolerance is essential to unravel plant adaptations to cold temperatures. Not only the survival of whole plants but also impairment of detached leaves after a freeze-thaw cycle can be used to accurately quantify plant freezing tolerance in terms of LT50 values. Here we describe two methods to determine the freezing tolerance of detached leaves using different physiological parameters. Firstly, we illustrate how to assess the integrity of (predominantly) the plasma membrane during freezing using an electrolyte leakage assay. Secondly, we provide a chlorophyll fluorescence imaging protocol to determine the freezing tolerance of the photosynthetic apparatus.
FEBS Journal | 2017
Anne Bremer; Martin Wolff; Anja Thalhammer; Dirk K. Hincha
Late embryogenesis abundant (LEA) proteins are related to cellular dehydration tolerance. Most LEA proteins are predicted to have no stable secondary structure in solution, i.e., to be intrinsically disordered proteins (IDPs), but they may acquire α‐helical structure upon drying. In the model plant Arabidopsis thaliana, the LEA proteins COR15A and COR15B are highly induced upon cold treatment and are necessary for the plants to attain full freezing tolerance. Freezing leads to increased intracellular crowding due to dehydration by extracellular ice crystals. In vitro, crowding by high glycerol concentrations induced partial folding of COR15 proteins. Here, we have extended these investigations to two related proteins, LEA11 and LEA25. LEA25 is much longer than LEA11 and COR15A, but shares a conserved central sequence domain with the other two proteins. We have created two truncated versions of LEA25 (2H and 4H) to elucidate the structural and functional significance of this domain. Light scattering and CD spectroscopy showed that all five proteins were largely unstructured and monomeric in dilute solution. They folded in the presence of increasing concentrations of trifluoroethanol and glycerol. Additional folding was observed in the presence of glycerol and membranes. Fourier transform infra red spectroscopy revealed an interaction of the LEA proteins with membranes in the dry state leading to a depression in the gel to liquid‐crystalline phase transition temperature. Liposome stability assays revealed a cryoprotective function of the proteins. The C‐ and N‐terminal extensions of LEA25 were important in cryoprotection, as the central domain itself (2H, 4H) only provided a low level of protection.
Plant Signaling & Behavior | 2014
Anja Thalhammer; Dirk K. Hincha
Plants as sessile organisms are strongly challenged by environmental stresses. Many plants species are able to cold-acclimate, acquiring higher freezing tolerance upon exposure to low but non-freezing temperatures. Among a plethora of adaptational processes, this involves the accumulation of cold regulated (COR) proteins that are assumed to stabilize and protect cellular structures during freezing. However, their molecular functions are largely unknown. We recently reported a comprehensive study of 2 intrinsically disordered cold regulated chloroplast proteins, COR15A and COR15B from Arabidopsis thaliana. They are necessary for full cold acclimation. During freezing, they stabilize leaf cells through folding and binding to chloroplast membranes. Contrary to evidence from in-vitro experiments, they play no role in enzyme stabilization in vivo. Elucidating these major functional and structural characteristics and estimation of protein abundance allow us to propose a detailed model for the mode of action of the two COR15 proteins.
Biophysical Journal | 2017
Anne Bremer; Ben Kent; Thomas Hauß; Anja Thalhammer; Nageshwar R. Yepuri; Tamim A. Darwish; Christopher J. Garvey; Gary Bryant; Dirk K. Hincha
Plants from temperate climate zones are able to increase their freezing tolerance during exposure to low, above-zero temperatures in a process termed cold acclimation. During this process, several cold-regulated (COR) proteins are accumulated in the cells. One of them is COR15A, a small, intrinsically disordered protein that contributes to leaf freezing tolerance by stabilizing cellular membranes. The isolated protein folds into amphipathic α-helices in response to increased crowding conditions, such as high concentrations of glycerol. Although there is evidence for direct COR15A-membrane interactions, the orientation and depth of protein insertion were unknown. In addition, although folding due to high osmolyte concentrations had been established, the folding response of the protein under conditions of gradual dehydration had not been investigated. Here we show, using Fourier transform infrared spectroscopy, that COR15A starts to fold into α-helices already under mild dehydration conditions (97% relative humidity (RH), corresponding to freezing at -3°C) and that folding gradually increases with decreasing RH. Neutron diffraction experiments at 97 and 75% RH established that the presence of COR15A had no significant influence on the structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. However, using deuterated POPC we could clearly establish that COR15A interacts with the membranes and penetrates below the headgroup region into the upper part of the fatty acyl chain region. This localization is in agreement with our hypothesis that COR15A-membrane interaction is at least, in part, driven by a hydrophobic interaction between the lipids and the hydrophobic face of the amphipathic protein α-helix.
Plant Biotechnology Journal | 2018
Heike Sprenger; Alexander Erban; Sylvia Seddig; Katharina Rudack; Anja Thalhammer; Mai Q. Le; Dirk Walther; Ellen Zuther; Karin Köhl; Joachim Kopka; Dirk K. Hincha
Summary Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker‐assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT‐PCR and GC‐MS profiling, respectively. Transcript marker candidates were selected from a published RNA‐Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.
Archive | 2013
Anja Thalhammer; Dirk K. Hincha
LEA (late embryogenesis abundant) proteins were originally described more than 30 years ago as accumulating late in plant seed development. They were later found to be induced in vegetative plant tissues under environmental stress conditions and also in desiccation-tolerant microorganisms and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Most LEA proteins are predicted to be intrinsically disordered and this has been experimentally verified in several cases. In addition, some LEA proteins partially fold, mainly into α-helices, during drying. COR (cold-regulated) genes have been identified in Arabidopsis thaliana as highly induced during cold acclimation and there is a substantial overlap between COR and LEA proteins. The best-characterized protein in this regard is COR15A, a nuclear-encoded, cold-induced LEA_4 protein that is localized in the chloroplast stroma. It is part of a small sub-family of five LEA proteins, including in addition to COR15A, also COR15B, LEA11, LEA12, and LEA25. Here, we have explored the evolutionary relationships between these proteins. In addition, we have analyzed the transcriptional networks that the encoding genes participate in.
Biophysical Journal | 2018
Carlos Navarro-Retamal; Anne Bremer; Helgi I. Ingólfsson; Jans H. Alzate-Morales; Julio Caballero; Anja Thalhammer; Wendy González; Dirk K. Hincha
Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic α-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results.