Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk K. Hincha is active.

Publication


Featured researches published by Dirk K. Hincha.


BMC Genomics | 2008

LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana

Michaela Hundertmark; Dirk K. Hincha

BackgroundLEA (late embryogenesis abundant) proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown.ResultsWe present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE) and/or low temperature response (LTRE) elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded.ConclusionThe analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for future efforts to elucidate the functional role of these enigmatic proteins.


PLOS Genetics | 2005

A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana

Matthew A. Hannah; Arnd G. Heyer; Dirk K. Hincha

Many temperate plant species such as Arabidopsis thaliana are able to increase their freezing tolerance when exposed to low, nonfreezing temperatures in a process called cold acclimation. This process is accompanied by complex changes in gene expression. Previous studies have investigated these changes but have mainly focused on individual or small groups of genes. We present a comprehensive statistical analysis of the genome-wide changes of gene expression in response to 14 d of cold acclimation in Arabidopsis, and provide a large-scale validation of these data by comparing datasets obtained for the Affymetrix ATH1 Genechip and MWG 50-mer oligonucleotide whole-genome microarrays. We combine these datasets with existing published and publicly available data investigating Arabidopsis gene expression in response to low temperature. All data are integrated into a database detailing the cold responsiveness of 22,043 genes as a function of time of exposure at low temperature. We concentrate our functional analysis on global changes marking relevant pathways or functional groups of genes. These analyses provide a statistical basis for many previously reported changes, identify so far unreported changes, and show which processes predominate during different times of cold acclimation. This approach offers the fullest characterization of global changes in gene expression in response to low temperature available to date.


Plant Physiology | 2006

Natural Genetic Variation of Freezing Tolerance in Arabidopsis

Matthew A. Hannah; Dana Wiese; Susanne Freund; Oliver Fiehn; Arnd G. Heyer; Dirk K. Hincha

Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance.


Cellular and Molecular Life Sciences | 2009

Fructan and its relationship to abiotic stress tolerance in plants.

David P. Livingston; Dirk K. Hincha; Arnd G. Heyer

Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation.


Plant Physiology | 2008

Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome

Zuzanna Bieniawska; Carmen Espinoza; Armin Schlereth; Ronan Sulpice; Dirk K. Hincha; Matthew A. Hannah

In plants, low temperature causes massive transcriptional changes, many of which are presumed to be involved in the process of cold acclimation. Given the diversity of developmental and environmental factors between experiments, it is surprising that their influence on the identification of cold-responsive genes is largely unknown. A systematic investigation of genes responding to 1 d of cold treatment revealed that diurnal- and circadian-regulated genes are responsible for the majority of the substantial variation between experiments. This is contrary to the widespread assumption that these effects are eliminated using paired diurnal controls. To identify the molecular basis for this variation, we performed targeted expression analyses of diurnal and circadian time courses in Arabidopsis (Arabidopsis thaliana). We show that, after a short initial cold response, in diurnal conditions cold reduces the amplitude of cycles for clock components and dampens or disrupts the cycles of output genes, while in continuous light all cycles become arrhythmic. This means that genes identified as cold-responsive are dependent on the time of day the experiment was performed and that a control at normal temperature will not correct for this effect, as was postulated up to now. Time of day also affects the number and strength of expression changes for a large number of transcription factors, and this likely further contributes to experimental differences. This reveals that interactions between cold and diurnal regulation are major factors in shaping the cold-responsive transcriptome and thus will be an important consideration in future experiments to dissect transcriptional regulatory networks controlling cold acclimation. In addition, our data revealed differential effects of cold on circadian output genes and a unique regulation of an oscillator component, suggesting that cold treatment could also be an important tool to probe circadian and diurnal regulatory mechanisms.


Biochemical Journal | 2004

Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms

Dirk K. Hincha; Martin Hagemann

Many organisms accumulate compatible solutes under environmental stress conditions. Cyanobacteria accumulate compatible solutes in response to increased external salinity, with tolerance increasing from Suc (sucrose) or trehalose to 2-O-(alpha-D-glucopyranosyl)-glycerol and glycinebetaine accumulating species. It is not clear how these different solutes influence salt tolerance. One possible explanation may be a differential ability of these solutes to stabilize membranes under stress conditions. We therefore performed drying experiments with liposomes in the presence of compatible solutes. Suc, trehalose and sorbitol protected liposomes from leakage of a soluble marker and from membrane fusion during drying and rehydration. 2-O-(alpha-D-glucopyranosyl)-glycerol was less effective and glycinebetaine showed hardly any effect. In combination with Suc, the latter two solutes showed improved protection. Lipid-phase transitions are known to contribute to solute leakage from liposomes. We determined phase transitions in dry membranes in the absence or presence of the solutes, using Fourier-transform infrared spectroscopy. The ability of the solutes to decrease the phase transition temperature corresponded closely to their ability to protect the liposomes against solute leakage. All solutes interacted with the phosphate in the lipid headgroups. The magnitude of the shift in the asymmetric P=O stretching vibration correlated closely with the lipid-phase transition temperature. This indicates that the degree of membrane protection afforded by the solutes is mainly determined by their ability to interact with the membrane lipids. However, this is not a determinant of cellular protection against salt stress, as the solutes show a reverse order when ranked with regard to protection against these stresses.


FEBS Letters | 2004

The role of raffinose in the cold acclimation response of Arabidopsis thaliana

Ellen Zuther; Kerstin Büchel; Michaela Hundertmark; Mark Stitt; Dirk K. Hincha; Arnd G. Heyer

In many plants raffinose family oligosaccharides are accumulated during cold acclimation. The contribution of raffinose accumulation to freezing tolerance is not clear. Here, we investigated whether synthesis of raffinose is an essential component for acquiring frost tolerance. We created transgenic lines of Arabidopsis thaliana accessions Columbia‐0 and Cape Verde Islands constitutively overexpressing a galactinol synthase (GS) gene from cucumber. GS overexpressing lines contained up to 20 times as much raffinose as the respective wild‐type under non‐acclimated conditions and up to 2.3 times more after 14 days of cold acclimation at 4 °C. Furthermore, we used a mutant carrying a knockout of the endogenous raffinose synthase (RS) gene. Raffinose was completely absent in this mutant. However, neither the freezing tolerance of non‐acclimated leaves, nor their ability to cold acclimate were influenced in the RS mutant or in the GS overexpressing lines. We conclude that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana.


Biochimica et Biophysica Acta | 2003

The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions.

Dirk K. Hincha; Ellen Zuther; Arnd G. Heyer

Raffinose family oligosaccharides (RFO) have been implicated as protective agents in the cellular dehydration tolerance, especially of many plant seeds. However, their efficacy in stabilizing membranes during dehydration has never been systematically investigated. We have analyzed the effects of sucrose, raffinose, stachyose, and verbascose on liposome stability during air-drying. With increasing degree of polymerization (DP), the RFO were progressively better able to stabilize liposomes against leakage of aqueous content and against membrane fusion after rehydration. Indeed, there was a very tight linear correlation between fusion and leakage for all RFO. These data indicate that increased protection of liposomes against leakage with increasing DP is due to better protection against fusion. This is in accord with the higher glass transition temperature of the longer chain oligosaccharides. Further evidence for the influence of glass transitions on membrane stability in the dry state was provided by experiments testing the temperature dependence of membrane fusion. During incubation at temperatures up to 95 degrees C for 2 h, fusion increased less with temperature in the presence of higher DP sugars. This indicates that RFO with a higher glass transition temperature are better able to protect dry membranes at elevated temperatures. In addition, Fourier-transform infrared (FTIR) spectroscopy showed a reduction of the gel to liquid-crystalline phase transition temperature of dry liposomes in the presence of all investigated sugars. However, the RFO became slightly less effective with increasing chain length, again pointing to a decisive role for preventing fusion. A direct interaction of the RFO with the lipids was indicated by a strong effect of the sugars on the phosphate asymmetric stretch region of the infrared spectrum.


Plant Physiology | 2009

AtMyb41 Regulates Transcriptional and Metabolic Responses to Osmotic Stress in Arabidopsis

Felix Lippold; Diego H. Sanchez; Magdalena Musialak; Armin Schlereth; Wolf-Ruediger Scheible; Dirk K. Hincha; Michael K. Udvardi

Myb transcription factors have been implicated in a wide variety of plant-specific processes, including secondary metabolism, cell shape determination, cell differentiation, and stress responses. Very recently, AtMyb41 from Arabidopsis (Arabidopsis thaliana) was described as a gene transcriptionally regulated in response to salinity, desiccation, cold, and abscisic acid. The corresponding transcription factor was suggested to control stress responses linked to cell wall modifications. In this work, we have characterized AtMyb41 further by subjecting independent AtMyb41-overexpressing lines to detailed transcriptome and metabolome analysis. Our molecular data indicate that AtMyb41 is involved in distinct cellular processes, including control of primary metabolism and negative regulation of short-term transcriptional responses to osmotic stress.


PLOS ONE | 2010

Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis

Carmen Espinoza; Thomas Degenkolbe; Camila Caldana; Ellen Zuther; Andrea Leisse; Lothar Willmitzer; Dirk K. Hincha; Matthew A. Hannah

In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C) affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further supported by our demonstration of impaired cold acclimation in a circadian mutant.

Collaboration


Dive into the Dirk K. Hincha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoaneta V. Popova

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John H. Crowe

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge