Anjan Thakurta
Celgene
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anjan Thakurta.
British Journal of Haematology | 2014
Anita Gandhi; Jian Kang; Courtney G. Havens; Thomas Conklin; Yuhong Ning; Lei Wu; Takumi Ito; Hideki Ando; Michelle Waldman; Anjan Thakurta; Anke Klippel; Hiroshi Handa; Thomas O. Daniel; Peter H. Schafer; Rajesh Chopra
Cereblon (CRBN), the molecular target of lenalidomide and pomalidomide, is a substrate receptor of the cullin ring E3 ubiquitin ligase complex, CRL4CRBN. T cell co‐stimulation by lenalidomide or pomalidomide is cereblon dependent: however, the CRL4CRBN substrates responsible for T cell co‐stimulation have yet to be identified. Here we demonstrate that interaction of the transcription factors Ikaros (IKZF1, encoded by the IKZF1 gene) and Aiolos (IKZF3, encoded by the IKZF3 gene) with CRL4CRBN is induced by lenalidomide or pomalidomide. Each agent promotes Aiolos and Ikaros binding to CRL4CRBN with enhanced ubiquitination leading to cereblon‐dependent proteosomal degradation in T lymphocytes. We confirm that Aiolos and Ikaros are transcriptional repressors of interleukin‐2 expression. The findings link lenalidomide‐ or pomalidomide‐induced degradation of these transcriptional suppressors to well documented T cell activation. Importantly, Aiolos could serve as a proximal pharmacodynamic marker for lenalidomide and pomalidomide, as healthy human subjects administered lenalidomide demonstrated Aiolos degradation in their peripheral T cells. In conclusion, we present a molecular model in which drug binding to cereblon results in the interaction of Ikaros and Aiolos to CRL4CRBN, leading to their ubiquitination, subsequent proteasomal degradation and T cell activation.
JAMA Oncology | 2017
Nikhil C. Munshi; Hervé Avet-Loiseau; Andy C. Rawstron; Roger G. Owen; J. Anthony Child; Anjan Thakurta; Paul Sherrington; Mehmet Kemal Samur; Anna Georgieva; Kenneth C. Anderson; Walter Gregory
Importance Numerous studies have evaluated the prognostic value of minimal residual disease (MRD) in patients with multiple myeloma (MM). Most studies were small and varied in terms of patient population, treatment, and MRD assessment methods. Objective To evaluate the utility of MRD detection in patients with newly diagnosed MM. Data Sources A Medline search was conducted for articles published in English between January 1990 and January 2016. Study Selection Eligible studies reported MRD status and progression-free survival (PFS) or overall survival (OS) in 20 or more patients following treatment. Among 405 articles identified, 21 met the initial eligibility criteria and were included in the analysis. Data Extraction and Synthesis Information on patient characteristics, treatment, MRD assessment, and outcomes were extracted using a standard form. Main Outcomes and Measures The impact of MRD status on PFS and OS was assessed by pooling data from relevant trials. Data were adjusted to allow for different proportions of patients with MRD in different studies, and analyzed using the Peto method. Forest plots were created based on Cox model analysis. Other prespecified research questions were addressed qualitatively. Results Fourteen studies (n = 1273) provided data on the impact of MRD on PFS, and 12 studies (n = 1100) on OS. Results were reported specifically in patients who had achieved conventional complete response (CR) in 5 studies for PFS (n = 574) and 6 studies for OS (n = 616). An MRD-negative status was associated with significantly better PFS overall (hazard ratio [HR], 0.41; 95% CI, 0.36-0.48; P < .001) and in studies specifically looking at CR patients (HR, 0.44; 95% CI, 0.34-0.56; P < .001). Overall survival was also favorable in MRD-negative patients overall (HR, 0.57; 95% CI, 0.46-0.71; P < .001) and in CR patients (HR, 0.47; 95% CI, 0.33-0.67; P < .001). Tests of heterogeneity found no significant differences among the studies for PFS and OS. Conclusions and Relevance Minimal residual disease-negative status after treatment for newly diagnosed MM is associated with long-term survival. These findings provide quantitative evidence to support the integration of MRD assessment as an end point in clinical trials of MM.
British Journal of Haematology | 2014
Anita Gandhi; Derek Mendy; Michelle Waldman; Gengxin Chen; Emily Rychak; Karen Miller; Svetlana Gaidarova; Yan Ren; Maria Wang; Michael Breider; Gilles Carmel; Afshin Mahmoudi; Pilgrim Jackson; Mahan Abbasian; Brian E. Cathers; Peter H. Schafer; Tom Daniel; Antonia Lopez-Girona; Anjan Thakurta; Rajesh Chopra
Cereblon, a member of the cullin 4 ring ligase complex (CRL4), is the molecular target of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide and is required for the antiproliferative activity of these agents in multiple myeloma (MM) and immunomodulatory activity in T cells. Cereblons central role as a target of lenalidomide and pomalidomide suggests potential utility as a predictive biomarker of response or resistance to IMiD therapy. Our studies characterized a cereblon monoclonal antibody CRBN65, with high sensitivity and specificity in Western analysis and immunohistochemistry that is superior to commercially available antibodies. We identified multiple cereblon splice variants in both MM cell lines and primary cells, highlighting challenges with conventional gene expression assays given this gene complexity. Using CRBN65 antibody and TaqMan quantitative reverse transcription polymerase chain reaction assays, we showed lack of correlation between cereblon protein and mRNA levels. Furthermore, lack of correlation between cereblon expression in MM cell lines and sensitivity to lenalidomide was shown. In cell lines made resistant to lenalidomide and pomalidomide, cereblon protein is greatly reduced. These studies show limitations to the current approaches of cereblon measurement that rely on commercial reagents and assays. Standardized reagents and validated assays are needed to accurately assess the role of cereblon as a predictive biomarker.
Blood | 2017
Michael Amatangelo; Lynn Quek; Alan Shih; Eytan M. Stein; Mikhail Roshal; Muriel D. David; Benoit Marteyn; Noushin Rahnamay Farnoud; Stéphane de Botton; Olivier Bernard; Bin Wu; Katharine E. Yen; Martin S. Tallman; Elli Papaemmanuil; Virginie Penard-Lacronique; Anjan Thakurta; Paresh Vyas; Ross L. Levine
Recurrent mutations at R140 and R172 in isocitrate dehydrogenase 2 (IDH2) occur in many cancers, including ∼12% of acute myeloid leukemia (AML). In preclinical models these mutations cause accumulation of the oncogenic metabolite R-2-hydroxyglutarate (2-HG) and induce hematopoietic differentiation block. Single-agent enasidenib (AG-221/CC-90007), a selective mutant IDH2 (mIDH2) inhibitor, produced an overall response rate of 40.3% in relapsed/refractory AML (rrAML) patients with mIDH2 in a phase 1 trial. However, its mechanism of action and biomarkers associated with response remain unclear. Here, we measured 2-HG, mIDH2 allele burden, and co-occurring somatic mutations in sequential patient samples from the clinical trial and correlated these with clinical response. Furthermore, we used flow cytometry to assess inhibition of mIDH2 on hematopoietic differentiation. We observed potent 2-HG suppression in both R140 and R172 mIDH2 AML subtypes, with different kinetics, which preceded clinical response. Suppression of 2-HG alone did not predict response, because most nonresponding patients also exhibited 2-HG suppression. Complete remission (CR) with persistence of mIDH2 and normalization of hematopoietic stem and progenitor compartments with emergence of functional mIDH2 neutrophils were observed. In a subset of CR patients, mIDH2 allele burden was reduced and remained undetectable with response. Co-occurring mutations in NRAS and other MAPK pathway effectors were enriched in nonresponding patients, consistent with RAS signaling contributing to primary therapeutic resistance. Together, these data support differentiation as the main mechanism of enasidenib efficacy in relapsed/refractory AML patients and provide insight into resistance mechanisms to inform future mechanism-based combination treatment studies.
Blood | 2015
Patrick Hagner; Hon Wah Man; Maria Wang; Suzana Couto; Mike Breider; Chad C. Bjorklund; Courtney G. Havens; Lu G; Emily Rychak; Heather Raymon; Rama Krishna Narla; Leo Barnes; Gody Khambatta; Hsiling Chiu; Jolanta Kosek; Jian Kang; Amantangelo; Michelle Waldman; Antonia Lopez-Girona; Cai T; Michael Pourdehnad; Matthew Trotter; Tom Daniel; Peter H. Schafer; Anke Klippel; Anjan Thakurta; Rajesh Chopra; Anita Gandhi
Cereblon (CRBN), a substrate receptor of the Cullin 4 RING E3 ubiquitin ligase complex, is the target of the immunomodulatory drugs lenalidomide and pomalidomide. Recently, it was demonstrated that binding of these drugs to CRBN promotes the ubiquitination and subsequent degradation of 2 common substrates, transcription factors Aiolos and Ikaros. Here we report that CC-122, a new chemical entity termed pleiotropic pathway modifier, binds CRBN and promotes degradation of Aiolos and Ikaros in diffuse large B-cell lymphoma (DLBCL) and T cells in vitro, in vivo, and in patients, resulting in both cell autonomous as well as immunostimulatory effects. In DLBCL cell lines, CC-122-induced degradation or short hairpin RNA-mediated knockdown of Aiolos and Ikaros correlates with increased transcription of interferon (IFN)-stimulated genes independent of IFN-α, -β, and -γ production and/or secretion and results in apoptosis in both activated B-cell (ABC) and germinal center B-cell DLBCL cell lines. Our results provide mechanistic insight into the cell-of-origin independent antilymphoma activity of CC-122, in contrast to the ABC subtype selective activity of lenalidomide.
Blood | 2015
Kartik Sehgal; Rituparna Das; Lin Zhang; Rakesh Verma; Yanhong Deng; Mehmet Kocoglu; Juan Vasquez; Srinivas Koduru; Yan Ren; Maria Wang; Suzana Couto; Mike Breider; Donna E. Hansel; Stuart Seropian; Dennis L. Cooper; Anjan Thakurta; Xiaopan Yao; Kavita M. Dhodapkar; Madhav V. Dhodapkar
In preclinical studies, pomalidomide mediated both direct antitumor effects and immune activation by binding cereblon. However, the impact of drug-induced immune activation and cereblon/ikaros in antitumor effects of pomalidomide in vivo is unknown. Here we evaluated the clinical and pharmacodynamic effects of continuous or intermittent dosing strategies of pomalidomide/dexamethasone in lenalidomide-refractory myeloma in a randomized trial. Intermittent dosing led to greater tumor reduction at the cost of more frequent adverse events. Both cohorts experienced similar event-free and overall survival. Both regimens led to a distinct pattern but similar degree of mid-cycle immune activation, manifested as increased expression of cytokines and lytic genes in T and natural killer (NK) cells. Pomalidomide induced poly-functional T-cell activation, with increased proportion of coinhibitory receptor BTLA(+) T cells and Tim-3(+) NK cells. Baseline levels of ikaros and aiolos protein in tumor cells did not correlate with response or survival. Pomalidomide led to rapid decline in Ikaros in T and NK cells in vivo, and therapy-induced activation of CD8(+) T cells correlated with clinical response. These data demonstrate that pomalidomide leads to strong and rapid immunomodulatory effects involving both innate and adaptive immunity, even in heavily pretreated multiple myeloma, which correlates with clinical antitumor effects. This trial was registered at www.clinicaltrials.gov as #NCT01319422.
Leukemia | 2014
Anjan Thakurta; Anita Gandhi; Michelle Waldman; Chad C. Bjorklund; Yuhong Ning; Derek Mendy; Peter H. Schafer; Antonia Lopez-Girona; Suzanne Lentzsch; Stephen Schey; Yolanda Calle; R. Chelliah; Robert Z. Orlowski; A. Madan; Hervé Avet-Loiseau; Rajesh Chopra
Thalidomide and the IMiD immunomodulatory drugs, lenalidomide and pomalidomide, are widely used in the treatment of multiple myeloma (MM), del(5q) myelodysplastic syndromes and other hematologic malignancies, including mantle cell lymphoma. Ito et al.1 recently identified cereblon as a key target of thalidomide. Subsequent studies confirmed cereblon to be a common target for lenalidomide and pomalidomide, and established its essential role in mediating anticancer and immunomodulatory effects of these drugs.2, 3 Cereblon is encoded by the CRBN gene on chromosome 3 containing 11 exons, and the fully spliced transcript produces a 51-kDa protein. Cereblon is a component of the cullin ring E3 ubiquitin ligase complex (CRL4CRBN) that also contains DNA damage-binding protein 1 (DDB1), cullin (Cul) 4a and regulator of cullins (Roc) 1.1 E3 ligases attach ubiquitin moieties to specific substrate proteins in the cell that can mark them for proteasomal degradation. The putative role of cereblon within the E3 ligase complex is that of a substrate receptor.
Clinical Cancer Research | 2017
Myron S. Czuczman; Marek Trněný; Andrew Davies; Simon Rule; Kim Linton; Nina D. Wagner-Johnston; Randy D. Gascoyne; Graham W. Slack; Pierre Brousset; David A. Eberhard; Francisco J. Hernandez-Ilizaliturri; Gilles Salles; Thomas E. Witzig; Pier Luigi Zinzani; George W. Wright; Louis M. Staudt; Yandan Yang; P. Mickey Williams; Chih Jian Lih; Jacqueline Russo; Anjan Thakurta; Patrick Hagner; Pierre Fustier; Dale Song; Ian D. Lewis
Purpose: Randomized, multicenter, open-label, phase 2/3 trial investigating lenalidomide versus investigators choice (IC) in relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Experimental Design: Patients with DLBCL who received ≥2 prior therapies were stratified by DLBCL subtype [germinal center B-cell (GCB) vs. non-GCB; determined by immunohistochemistry (IHC)] and then randomized 1:1 to lenalidomide (25 mg/day, 21 days of 28-day cycle) or IC (gemcitabine, rituximab, etoposide, or oxaliplatin). Crossover to lenalidomide was permitted for IC-treated patients with radiologically confirmed progressive disease. The primary endpoint was overall response rate (ORR). Progression-free survival (PFS), overall survival, and subtype analysis [GCB vs. activated B-cell (ABC)] using gene expression profiling (GEP) were exploratory endpoints. Results: Stage 1: 102 DLBCL patients (by IHC: non-GCB, n = 54; GCB, n = 48) received ≥1 dose of lenalidomide or IC. Hematologic treatment-emergent adverse events with lenalidomide versus IC included neutropenia (42.6%; 36.4%), anemia (33.3%; 47.3%), thrombocytopenia (24.1%; 43.6%), and leukopenia (5.6%; 12.7%), respectively. Overall, lenalidomide-treated patients had an ORR of 27.5% versus 11.8% in IC (ORRs were similar regardless of IHC-defined DLBCL subtype). Median PFS was increased in patients receiving lenalidomide (13.6 weeks) versus IC (7.9 weeks; P = 0.041), with greater improvements in non-GCB patients (15.1 vs. 7.1 weeks, respectively; P = 0.021) compared with GCB (10.1 vs. 9.0 weeks, respectively; P = 0.550). Conclusions: The clinical benefit of lenalidomide monotherapy in DLBCL patients was more evident in the non-GCB subtype. Exploratory analyses suggest that this preferential benefit was more pronounced in the GEP-defined ABC population, demonstrating a need for additional studies of lenalidomide in DLBCL using GEP subtyping. Clin Cancer Res; 23(15); 4127–37. ©2017 AACR.
British Journal of Haematology | 2016
Emily Rychak; Derek Mendy; Tao Shi; Yuhong Ning; Jim Leisten; Ling Lu; Karen Miller; Rama Krishna Narla; Robert Z. Orlowski; Heather Raymon; Chad C. Bjorklund; Anjan Thakurta; Anita Gandhi; Brian E. Cathers; Rajesh Chopra; Thomas O. Daniel; Antonia Lopez-Girona
Pomalidomide is an IMiD® immunomodulatory agent, which has shown clinically significant benefits in relapsed and/or refractory multiple myeloma (rrMM) patients when combined with dexamethasone, regardless of refractory status to lenalidomide or bortezomib. (Schey et al, ; San Miguel et al, 2013; Richardson et al, 2014; Scott, ) In this work, we present preclinical data showing that the combination of pomalidomide with dexamethasone (PomDex) demonstrates potent anti‐proliferative and pro‐apoptotic activity in both lenalidomide‐sensitive and lenalidomide‐resistant MM cell lines. PomDex also synergistically inhibited tumour growth compared with single‐agent treatment in xenografts of lenalidomide‐resistant H929 R10‐1 cells. Typical hallmarks of IMiD compound activity, including IKZF3 (Aiolos) degradation, and the downregulation of interferon regulatory factor (IRF) 4 and MYC, seen in lenalidomide‐sensitive H929 MM cell lines, were also observed in PomDex‐treated lenalidomide‐resistant H929 MM cells. Remarkably, this resulted in strong, synergistic effects on the induction of apoptosis in both lenalidomide‐sensitive and resistant MM cells. Furthermore, gene expression profiling revealed a unique differential gene expression pattern in PomDex‐treated samples, highlighted by the modulation of pro‐apoptotic pathways in lenalidomide‐resistant cells. These results provide key insights into molecular mechanisms of PomDex in the lenalidomide‐resistant setting.
British Journal of Haematology | 2017
Patrick Hagner; Hsiling Chiu; Maria Ortiz; Benedetta Apollonio; Maria Wang; Suzana Couto; Michelle Waldman; Erin Flynt; Alan G. Ramsay; Matthew Trotter; Anita Gandhi; Rajesh Chopra; Anjan Thakurta
Lenalidomide is an immunomodulatory agent that has demonstrated clinical benefit for patients with relapsed or refractory mantle cell lymphoma (MCL); however, despite this observed clinical activity, the mechanism of action (MOA) of lenalidomide has not been characterized in this setting. We investigated the MOA of lenalidomide in clinical samples from patients enrolled in the CC‐5013‐MCL‐002 trial (NCT00875667) comparing single‐agent lenalidomide versus investigators choice single‐agent therapy and validated our findings in pre‐clinical models of MCL. Our results revealed a significant increase in natural killer (NK) cells relative to total lymphocytes in lenalidomide responders compared to non‐responders that was associated with a trend towards prolonged progression‐free survival and overall survival. Clinical response to lenalidomide was independent of baseline tumour microenvironment expression of its molecular target, cereblon, as well as genetic mutations reported to impact clinical response to the Bruton tyrosine kinase inhibitor ibrutinib. Preclinical experiments revealed lenalidomide enhanced NK cell‐mediated cytotoxicity against MCL cells via increased lytic immunological synapse formation and secretion of granzyme B. In contrast, lenalidomide exhibited minimal direct cytotoxic effects against MCL cells. Taken together, these data provide the first insight into the clinical activity of lenalidomide against MCL, revealing a predominately immune‐mediated MOA.