Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad C. Bjorklund is active.

Publication


Featured researches published by Chad C. Bjorklund.


Blood | 2011

Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide

Yuan Xiao Zhu; Esteban Braggio; Chang Xin Shi; Laura Bruins; Jessica Schmidt; Scott Van Wier; Xiu Bao Chang; Chad C. Bjorklund; Rafael Fonseca; P. Leif Bergsagel; Robert Z. Orlowski; A. Keith Stewart

The precise molecular mechanism of action and targets through which thalidomide and related immunomodulatory drugs (IMiDs) exert their antitumor effects remains unclear. We investigated the role of cereblon (CRBN), a primary teratogenic target of thalidomide, in the antimyeloma activity of IMiDs. CRBN depletion is initially cytotoxic to human myeloma cells, but surviving cells with stable CRBN depletion become highly resistant to both lenalidomide and pomalidomide, but not to the unrelated drugs bortezomib, dexamethasone, and melphalan. Acquired deletion of CRBN was found to be the primary genetic event differentiating isogenic MM1.S cell lines cultured to be sensitive or resistant to lenalidomide and pomalidomide. Gene expression changes induced by lenalidomide were dramatically suppressed in the presence of CRBN depletion, further demonstrating that CRBN is required for lenalidomide activity. Downstream targets of CRBN include interferon regulatory factor 4 (IRF4) previously reported to also be a target of lenalidomide. Patients exposed to, and putatively resistant to, lenalidomide had lower CRBN levels in paired samples before and after therapy. In summary, CRBN is an essential requirement for IMiD activity and a possible biomarker for the clinical assessment of antimyeloma efficacy.


Blood | 2012

Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma

Deborah J. Kuhn; Zuzana Berkova; Richard J. Jones; Richard Woessner; Chad C. Bjorklund; Wencai Ma; R. Eric Davis; Pei Lin; Hua Wang; Timothy Madden; Caimiao Wei; Veerabhadran Baladandayuthapani; Michael Wang; Sheeba K. Thomas; Jatin J. Shah; Donna M. Weber; Robert Z. Orlowski

Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic.


Journal of Biological Chemistry | 2011

Evidence of a role for activation of Wnt/β-catenin signaling in the resistance of plasma cells to lenalidomide

Chad C. Bjorklund; Wencai Ma; Zhiqiang Wang; R. Eric Davis; Deborah J. Kuhn; Steven M. Kornblau; Michael Wang; Jatin J. Shah; Robert Z. Orlowski

Lenalidomide plays an important role in our chemotherapeutic armamentarium against multiple myeloma, in part by exerting direct anti-proliferative and pro-apoptotic effects. Unfortunately, long-term exposure leads to the development of drug resistance through unknown mechanisms, and we therefore sought to identify pathways that could be responsible for this phenotype. Chronic drug exposure produced myeloma cell lines that were tolerant of the direct effects of lenalidomide, with a degree of resistance of up to 2,500-fold. Gene expression profiling and pathway analysis identified dysregulation of the Wnt/β-catenin pathway as a consistent change across four independent cell isolates, and a pair of primary plasma cell samples. Acute drug treatment also increased β-catenin transcription by 3-fold or more, and both acute and chronic exposure resulted in enhanced accumulation of β-catenin protein by up to 20-fold or more. This produced Wnt/β-catenin pathway activation, as judged by increased activity of a lymphoid enhancer factor/T-cell factor promoter reporter, and enhanced accumulation of the downstream targets cyclin D1 and c-Myc. Components of the β-catenin destruction complex were also impacted by lenalidomide, which suppressed casein kinase 1α expression while augmenting glycogen synthase kinase 3α/β phosphorylation. Stimulation of Wnt/β-catenin signaling with recombinant Wnt-3a, or by overexpression of β-catenin, reduced the anti-proliferative activity of lenalidomide. Conversely, suppression of β-catenin with small hairpin RNAs restored plasma cell sensitivity to lenalidomide. Together, these findings support the hypothesis that lenalidomide mediates activation of Wnt/β-catenin signaling in plasma cells as a mechanism of inducible chemoresistance through effects at the transcriptional and post-translational levels.


Current Cancer Drug Targets | 2011

Second Generation Proteasome Inhibitors: Carfilzomib and Immunoproteasome-Specific Inhibitors (IPSIs)

Deborah J. Kuhn; Robert Z. Orlowski; Chad C. Bjorklund

The ubiquitin-proteasome pathway (UPP) is an attractive chemotherapeutic target due to its intrinsically stringent regulation of cell cycle, pro-survival, and anti-apoptotic regulators that disproportionately favor survival and proliferation in malignant cells. A reversible first-in-class proteasome inhibitor, bortezomib, is Food and Drug Administration approved for multiple myeloma and relapsed/refractory mantle cell lymphoma and has proven to be extremely effective, both as a single agent and in combination. An irreversible second generation proteasome inhibitor, carfilzomib, has shown preclinical effectiveness against hematological and solid malignancies both in vitro and in vivo. Carfilzomib, a peptidyl-epoxyketone functions similarly to bortezomib through primary inhibition of chymotrypsin-like (ChT-L) activity at the b5 subunits of the core 20S proteasome. Carfilzomib is also currently achieving successful response rates within the clinical setting. In addition to conventional proteasome inhibitors, a novel approach may be to specifically target the hematological-specific immunoproteasome, thereby increasing overall effectiveness and reducing negative off-target effects. The immunoproteasome-specific inhibitor, IPSI-001, was shown to have inhibitory preference over the constitutive proteasome, and display enhanced efficiency of apoptotic induction of tumor cells from a hematologic origin. Herein, we discuss the preclinical and clinical development of carfilzomib and explore the potential of immunoproteasome-specific inhibitors, like IPSI-001, as a rational approach to exclusively target hematological malignancies.


Leukemia | 2014

Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: Therapeutic implications

Chad C. Bjorklund; Veerabhadran Baladandayuthapani; Heather Lin; Richard J. Jones; Isere Kuiatse; Hua Wang; Jing Yang; Jatin J. Shah; Sheeba K. Thomas; Michael Wang; Donna M. Weber; Robert Z. Orlowski

Resistance of myeloma to lenalidomide is an emerging clinical problem, and though it has been associated in part with activation of Wnt/β-catenin signaling, the mediators of this phenotype remained undefined. Lenalidomide-resistant models were found to overexpress the hyaluronan (HA)-binding protein CD44, a downstream Wnt/β-catenin transcriptional target. Consistent with a role of CD44 in cell adhesion-mediated drug resistance (CAM-DR), lenalidomide-resistant myeloma cells were more adhesive to bone marrow stroma and HA-coated plates. Blockade of CD44 with monoclonal antibodies, free HA or CD44 knockdown reduced adhesion and sensitized to lenalidomide. Wnt/β-catenin suppression by FH535 enhanced the activity of lenalidomide, as did interleukin-6 neutralization with siltuximab. Notably, all-trans retinoic acid (ATRA) downregulated total β-catenin, cell-surface and total CD44, reduced adhesion of lenalidomide-resistant myeloma cells and enhanced the activity of lenalidomide in a lenalidomide-resistant in vivo murine xenograft model. Finally, ATRA sensitized primary myeloma samples from patients that had relapsed and/or refractory disease after lenalidomide therapy to this immunomodulatory agent ex vivo. Taken together, our findings support the hypotheses that CD44 and CAM-DR contribute to lenalidomide resistance in multiple myeloma, that CD44 should be evaluated as a putative biomarker of sensitivity to lenalidomide, and that ATRA or other approaches that target CD44 may overcome clinical lenalidomide resistance.


Blood | 2015

CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL

Patrick Hagner; Hon Wah Man; Maria Wang; Suzana Couto; Mike Breider; Chad C. Bjorklund; Courtney G. Havens; Lu G; Emily Rychak; Heather Raymon; Rama Krishna Narla; Leo Barnes; Gody Khambatta; Hsiling Chiu; Jolanta Kosek; Jian Kang; Amantangelo; Michelle Waldman; Antonia Lopez-Girona; Cai T; Michael Pourdehnad; Matthew Trotter; Tom Daniel; Peter H. Schafer; Anke Klippel; Anjan Thakurta; Rajesh Chopra; Anita Gandhi

Cereblon (CRBN), a substrate receptor of the Cullin 4 RING E3 ubiquitin ligase complex, is the target of the immunomodulatory drugs lenalidomide and pomalidomide. Recently, it was demonstrated that binding of these drugs to CRBN promotes the ubiquitination and subsequent degradation of 2 common substrates, transcription factors Aiolos and Ikaros. Here we report that CC-122, a new chemical entity termed pleiotropic pathway modifier, binds CRBN and promotes degradation of Aiolos and Ikaros in diffuse large B-cell lymphoma (DLBCL) and T cells in vitro, in vivo, and in patients, resulting in both cell autonomous as well as immunostimulatory effects. In DLBCL cell lines, CC-122-induced degradation or short hairpin RNA-mediated knockdown of Aiolos and Ikaros correlates with increased transcription of interferon (IFN)-stimulated genes independent of IFN-α, -β, and -γ production and/or secretion and results in apoptosis in both activated B-cell (ABC) and germinal center B-cell DLBCL cell lines. Our results provide mechanistic insight into the cell-of-origin independent antilymphoma activity of CC-122, in contrast to the ABC subtype selective activity of lenalidomide.


Molecular Cancer Therapeutics | 2012

Drug Resistance to Inhibitors of the Human Double Minute-2 E3 Ligase Is Mediated by Point Mutations of p53, but Can Be Overcome with the p53 Targeting Agent RITA

Richard J. Jones; Chad C. Bjorklund; Veerabhadran Baladandayuthapani; Deborah J. Kuhn; Robert Z. Orlowski

The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover and has been validated preclinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, whereas Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA (reactivation of p53 and induction of tumor cell apoptosis). HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor nongenotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G2–M arrest, upregulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared with RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation. Mol Cancer Ther; 11(10); 2243–53. ©2012 AACR.


PLOS ONE | 2014

Inhibition of the MDM2 E3 Ligase Induces Apoptosis and Autophagy in Wild-Type and Mutant p53 Models of Multiple Myeloma, and Acts Synergistically with ABT-737

Dongmin Gu; Shuhong Wang; Isere Kuiatse; Hua Wang; Jin He; Yun Dai; Richard J. Jones; Chad C. Bjorklund; Jing Yang; Steven Grant; Robert Z. Orlowski

Intracellular proteolytic pathways have been validated as rational targets in multiple myeloma with the approval of two proteasome inhibitors in this disease, and with the finding that immunomodulatory agents work through an E3 ubiquitin ligase containing Cereblon. Another E3 ligase that could be a rational target is the murine double minute (MDM) 2 protein, which plays a role in p53 turnover. A novel inhibitor of this complex, MI-63, was found to induce apoptosis in p53 wild-type myeloma models in association with activation of a p53-mediated cell death program. MI-63 overcame adhesion-mediated drug resistance, showed anti-tumor activity in vivo, enhanced the activity of bortezomib and lenalidomide, and also overcame lenalidomide resistance. In mutant p53 models, inhibition of MDM2 with MI-63 also activated apoptosis, albeit at higher concentrations, and this was associated with activation of autophagy. When MI-63 was combined with the BH3 mimetic ABT-737, enhanced activity was seen in both wild-type and mutant p53 models. Finally, this regimen showed efficacy against primary plasma cells from patients with newly diagnosed and relapsed/refractory myeloma. These findings support the translation of novel MDM2 inhibitors both alone, and in combination with other novel agents, to the clinic for patients with multiple myeloma.


Leukemia | 2014

Absence of mutations in cereblon ( CRBN ) and DNA damage-binding protein 1 ( DDB1 ) genes and significance for IMiD therapy

Anjan Thakurta; Anita Gandhi; Michelle Waldman; Chad C. Bjorklund; Yuhong Ning; Derek Mendy; Peter H. Schafer; Antonia Lopez-Girona; Suzanne Lentzsch; Stephen Schey; Yolanda Calle; R. Chelliah; Robert Z. Orlowski; A. Madan; Hervé Avet-Loiseau; Rajesh Chopra

Thalidomide and the IMiD immunomodulatory drugs, lenalidomide and pomalidomide, are widely used in the treatment of multiple myeloma (MM), del(5q) myelodysplastic syndromes and other hematologic malignancies, including mantle cell lymphoma. Ito et al.1 recently identified cereblon as a key target of thalidomide. Subsequent studies confirmed cereblon to be a common target for lenalidomide and pomalidomide, and established its essential role in mediating anticancer and immunomodulatory effects of these drugs.2, 3 Cereblon is encoded by the CRBN gene on chromosome 3 containing 11 exons, and the fully spliced transcript produces a 51-kDa protein. Cereblon is a component of the cullin ring E3 ubiquitin ligase complex (CRL4CRBN) that also contains DNA damage-binding protein 1 (DDB1), cullin (Cul) 4a and regulator of cullins (Roc) 1.1 E3 ligases attach ubiquitin moieties to specific substrate proteins in the cell that can mark them for proteasomal degradation. The putative role of cereblon within the E3 ligase complex is that of a substrate receptor.


Molecular Cancer Therapeutics | 2011

Luteinizing Hormone-Releasing Hormone (LHRH)-I Antagonist Cetrorelix Inhibits Myeloma Cell Growth In vitro and In vivo

Jianguo Wen; Yongdong Feng; Chad C. Bjorklund; Michael Wang; Robert Z. Orlowski; Zheng Zheng Shi; Bing Liao; Jacqueline O'Hare; Youli Zu; Andrew V. Schally; Chung Che Chang

The objective of this study was to determine the effects of an luteinizing hormone-releasing hormone (LHRH)-I antagonist, Cetrorelix, on human multiple myeloma (MM) cells and to elucidate the mechanisms of action. We showed that LHRH-I and LHRHR-I genes were expressed in MM cell lines and primary MM cells. Treatment with Cetrorelix inhibited growth and colony-forming ability of myeloma cells, including cell lines resistant to arsenic trioxide, bortezomib, or lenalidomide. Cetrorelix induced apoptosis in myeloma cells including primary myeloma cells. In addition, Cetrorelix inhibited the growth of human myeloma cells xenografted into mice without any apparent side effects. Cetrorelix downregulated the nuclear factor-kappa B (NF-κB) pathway activity and the expression of cytokines, including interleukin 6, insulin-like growth factor 1, VEGF-A, and stromal-derived factor 1, important for myeloma cell growth and survival in myeloma cells and/or marrow stromal cells from myeloma patients. Cetrorelix decreased the phosphorylation of extracellular signal regulated kinase 1/2 and STAT3 in myeloma cells, two crucial pathways for myeloma cells growth and survival. Moreover, the expression of p21 and p53 was increased, whereas that of antiapoptotic proteins Bcl-2 and Bcl-xL was reduced by Cetrorelix. Our findings indicate that Cetrorelix induces cytotoxicity in myeloma cells through various mechanisms and provide a rationale for investigating Cetrorelix for the treatment of MM. Mol Cancer Ther; 10(1); 148–58. ©2010 AACR.

Collaboration


Dive into the Chad C. Bjorklund's collaboration.

Top Co-Authors

Avatar

Robert Z. Orlowski

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Deborah J. Kuhn

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Wang

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Isere Kuiatse

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge