Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anji Seth is active.

Publication


Featured researches published by Anji Seth.


Journal of Climate | 1998

The Effects of Domain Choice on Summer Precipitation Simulation and Sensitivity in a Regional Climate Model

Anji Seth; Filippo Giorgi

Abstract Recent results show disagreement between global and limited-area models as to the role of soil moisture feedback during the summer of 1993 in the central United States. July precipitation totals increase by 50% in the European Centre for Medium-Range Weather Forecasts global model when soil moisture is initialized “wet,” but two separate regional modeling groups [University of Utah Limited Area Model group and National Center for Atmospheric Research Regional Climate Model (RegCM) group] have found very different responses to soil moisture, indicating that drier soil moisture conditions might actually lead to increased precipitation via an increase in convective instability and an enhancement of the low-level jet from the Gulf of Mexico. To further evaluate the sensitivity results of RegCM in this context, a new suite of simulations, driven by analyses of observations for May–July of 1988 and 1993 is performed. The model domain is larger than in the previous experiments and the sensitivity of pre...


Bulletin of the American Meteorological Society | 2014

CMIP5 Climate Model Analyses: Climate Extremes in the United States

Donald J. Wuebbles; Gerald A. Meehl; Katharine Hayhoe; Thomas R. Karl; Kenneth E. Kunkel; Benjamin D. Santer; Michael F. Wehner; Brian A. Colle; Erich M. Fischer; Rong Fu; Alex Goodman; Emily Janssen; Viatcheslav V. Kharin; Huikyo Lee; Wenhong Li; Lindsey N. Long; Seth Olsen; Zaitao Pan; Anji Seth; Justin Sheffield; Liqiang Sun

This is the fourth in a series of four articles on historical and projected climate extremes in the United States. Here, we examine the results of historical and future climate model experiments from the phase 5 of the Coupled Model Intercomparison Project (CMIP5) based on work presented at the World Climate Research Programme (WCRP) Workshop on CMIP5 Climate Model Analyses held in March 2012. Our analyses assess the ability of CMIP5 models to capture observed trends, and we also evaluate the projected future changes in extreme events over the contiguous Unites States. Consistent with the previous articles, here we focus on model-simulated historical trends and projections for temperature extremes, heavy precipitation, large-scale drivers of precipitation variability and drought, and extratropical storms. Comparing new CMIP5 model results with earlier CMIP3 simulations shows that in general CMIP5 simulations give similar patterns and magnitudes of future temperature and precipitation extremes in the Unite...


Journal of Climate | 2013

North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical Simulations of Continental and Regional Climatology*

Justin Sheffield; Andrew P. Barrett; Brian A. Colle; D. Nelun Fernando; Rong Fu; Kerrie L. Geil; Qi Hu; J. L. Kinter; Sanjiv Kumar; Baird Langenbrunner; Kelly Lombardo; Lindsey N. Long; Eric D. Maloney; Annarita Mariotti; Joyce E. Meyerson; Kingtse C. Mo; J. David Neelin; Sumant Nigam; Zaitao Pan; Tong Ren; Alfredo Ruiz-Barradas; Yolande L. Serra; Anji Seth; Jeanne M. Thibeault; Julienne Stroeve; Ze Yang; Lei Yin

AbstractThis is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variab...


Journal of Geophysical Research | 1994

Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS)

Anji Seth; Filippo Giorgi; Robert E. Dickinson

A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces at the scale of an atmospheric model (AM) grid cell. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climatic forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominant vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.


Journal of Climate | 2014

North American Climate in CMIP5 Experiments: Part III: Assessment of Twenty-First-Century Projections*

Eric D. Maloney; Suzana J. Camargo; Edmund K. M. Chang; Brian A. Colle; Rong Fu; Kerrie L. Geil; Qi Hu; Xianan Jiang; Nathaniel C. Johnson; Kristopher B. Karnauskas; James L. Kinter; Benjamin Kirtman; Sanjiv Kumar; Baird Langenbrunner; Kelly Lombardo; Lindsey N. Long; Annarita Mariotti; Joyce E. Meyerson; Kingtse C. Mo; J. David Neelin; Zaitao Pan; Richard Seager; Yolande L. Serra; Anji Seth; Justin Sheffield; Julienne Stroeve; Jeanne M. Thibeault; Shang-Ping Xie; Chunzai Wang; Bruce Wyman

AbstractIn part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, inc...


Annals of The Association of American Geographers | 2010

Adapting to climate change in Andean ecosystems: Landscapes, capitals, and perceptions shaping rural livelihood strategies and linking knowledge systems

Corinne Valdivia; Anji Seth; Jere L. Gilles; Magali García; Elizabeth Jiménez; J. Cusicanqui; Fredy Navia; Edwin Yucra

In the Bolivian Altiplano, indigenous systems for dealing with weather and climate risk are failing or being lost as a result of migration, climate change, and market integration. Andean rural communities are particularly vulnerable to changing social and environmental conditions. Changing climate over the past forty years and current forecast models point to increasing temperatures and later onset of rains during the growing season. Current meteorological models are coarse grained and not well suited to the complex topology of the Andes—so local-scale information is required for decisions. This article outlines a process for developing new local knowledge that can be used to enhance adaptive processes. This is a three-step process that includes assessment of local knowledge, the development of future scenarios, and the use of participatory research methods to identify alternative adaptation strategies. Initial analyses based on the survey of 330 households in nine communities indicate that northern Alitplano communities are more vulnerable than central Altiplano ones. In both areas, losses from climate shocks are high, but the types of hazards vary by location. The use of local knowledge indicators of climate is declining, and downscaling of climate forecasts is unlikely to occur due to the lack of data points and the large number of microclimates. Participatory mapping and research, where knowledge is shared, are processes that enhance adaptive capacity and are critical to building resilience. This article outlines a strategy for linking science-based and indigenous methods to develop early warning systems that are an important part of coping strategies. This approach combines science and indigenous knowledge to enhance adaptive capacity.


Journal of Climate | 2003

Simulation and Sensitivity in a Nested Modeling System for South America. Part I: Reanalyses Boundary Forcing

Anji Seth; Maisa Rojas

Abstract A regional climate model driven by reanalyzed atmospheric forcing is used to investigate 1) the large-scale circulation anomalies that were driven by sea surface temperatures (SSTs), which resulted in extreme rainfall anomalies during January–May 1983 (dry) and 1985 (wet) in tropical South America; 2) the effects of vegetation and soil moisture in the interior Amazon basin on regional circulations, moisture transport, and rainfall; and 3) the sensitivity of regional model results to domain size. Seasonal integrations demonstrated that by prescribing observed SSTs and applying reanalyses-derived forcing along the boundaries of the control domain, the regional climate model (RegCM) was able to simulate the dramatically different large-scale circulations in the two years, as well as the resulting rainfall differences. Thus, the large-scale forcing apparently has a first-order effect on the region. The regional model shows reduced rainfall in the western Amazon compared with observed estimates that a...


Monthly Weather Review | 2003

Reinitialized versus Continuous Simulations for Regional Climate Downscaling

Jian-Hua Qian; Anji Seth; Stephen E. Zebiak

The methodology for dynamical climate downscaling is studied using the second-generation regional climate model (RegCM2). The question addressed is, in order to simulate high-resolution details as accurately as possible, what strategy should be taken: continuous long-term integration in climate prediction mode or consecutive shortterm integrations in weather forcasting mode? To investigate this problem, the model was run for 5 months in three different ways: 1) a 5-month continuous simulation, 2) monthly reinitialized simulations, and 3) 10-day reinitialized simulations. Compared to the observed precipitation, the 10-day reinitialized simulation results in the smallest error, while the continuous run shows larger error. Analysis shows that the long-term continuous simulation is contaminated by the systematic errors associated with the steep Andes Mountains and the uncertainties in the moisture processes in the planetary boundary layer near the coast. The method of 10-day reinitialization effectively mitigates the problem of systematic errors and makes a difference in the subtle precipitation processes in the regional climate model, therefore improving the accuracy in dynamic downscaling.


Journal of Climate | 2005

The Effect of Regional Climate Model Domain Choice on the Simulation of Tropical Cyclone-Like Vortices in the Southwestern Indian Ocean

Willem A. Landman; Anji Seth; Suzana J. Camargo

A regional climate model is tested for several domain configurations over the southwestern Indian Ocean to examine the ability of the model to reproduce observed cyclones and their landfalling tracks. The interaction between large-scale and local terrain forcing of tropical storms approaching and transiting the island landmass of Madagascar makes the southwestern Indian Ocean a unique and interesting study area. In addition, tropical cyclones across the southern Indian Ocean are likely to be significantly affected by the large-scale zonal flow. Therefore, the effects of model domain size and the positioning of its lateral boundaries on the simulation of tropical cyclone–like vortices and their tracks on a seasonal time scale are investigated. Four tropical cyclones, which occurred over the southwestern Indian Ocean in January of the years 1995–97, are studied, and four domains are tested. The regional climate model is driven by atmospheric lateral boundary conditions that are derived from large-scale meteorological analyses. The use of analyzed boundary forcing enables comparison with observed cyclones in these tests. Simulations are performed using a 60-km horizontal resolution and for an extended time integration of about 6 weeks. Results show that the positioning of the eastern boundary of the regional model domain is of major importance in the life cycle of simulated tropical cyclone–like vortices: a vortex entering through the eastern boundary of the regional model is generally well simulated. The size of the domain also has a bearing on the ability of the regional model to simulate vortices in the Mozambique Channel, and the island landmass of Madagascar additionally influences storm tracks. These results show that the regional model can produce cyclonelike vortices and their tracks (with some deficiencies) given analyzed lateral boundary forcing. Statistical analyses of GCM-driven nested model ensemble integrations are now required to further address predictive skill of cyclones in the southwestern Indian Ocean and to test if the model can realistically simulate tropical storm genesis as opposed to advecting existing tropical disturbances entering through the model boundaries.


Journal of Climate | 2006

Monsoon Regimes in the CCSM3

Gerald A. Meehl; Julie M. Arblaster; David M. Lawrence; Anji Seth; Edwin K. Schneider; Ben P. Kirtman; Dughong Min

Abstract Simulations of regional monsoon regimes, including the Indian, Australian, West African, South American, and North American monsoons, are described for the T85 version of the Community Climate System Model version 3 (CCSM3) and compared to observations and Atmospheric Model Intercomparison Project (AMIP)-type SST-forced simulations with the Community Atmospheric Model version 3 (CAM3) at T42 and T85. There are notable improvements in the regional aspects of the precipitation simulations in going to the higher-resolution T85 compared to T42 where topography is important (e.g., Ethiopian Highlands, South American Andes, and Tibetan Plateau). For the T85 coupled version of CCSM3, systematic SST errors are associated with regional precipitation errors in the monsoon regimes of South America and West Africa, though some aspects of the monsoon simulations, particularly in Asia, improve in the coupled model compared to the SST-forced simulations. There is very little realistic intraseasonal monsoon vari...

Collaboration


Dive into the Anji Seth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brant Liebmann

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Fu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindsey N. Long

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Zaitao Pan

Saint Louis University

View shared research outputs
Researchain Logo
Decentralizing Knowledge