Anju Bansal
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anju Bansal.
Journal of Virology | 2011
LaTonya D. Williams; Anju Bansal; Steffanie Sabbaj; Sonya L. Heath; Wei Song; Jianming Tang; Allan J. Zajac; Paul A. Goepfert
ABSTRACT A hallmark of human immunodeficiency virus type 1 (HIV-1) pathogenesis is the rapid loss of CD4 T cells leading to generalized immune dysfunction, including an exhausted CD8 T cell phenotype. Understanding the necessary factors that govern the functional quality and protective potential of antiviral T cell responses would facilitate rational vaccine design and improve therapeutic strategies to combat persistent infections. Mouse models of chronic viral infection demonstrate that interleukin-21 (IL-21), produced primarily by CD4 T cells, is required for the generation and maintenance of functionally competent CD8 T cells and viral containment. We reasoned that preserved IL-21 production during HIV-1 infection would be associated with enhanced CD8 T cell function, allowing improved viral control. Here we analyzed the ability of CD4 and CD8 T cells to produce several cytokines in addition to IL-21 ex vivo following stimulation with overlapping HIV-1 peptides. Both CD4 and CD8 T cells were able to produce IL-21 in response to HIV-1 infection, with the latter cell type more closely associated with viral control. Furthermore, IL-21-producing HIV-1-specific CD4 T cells (compared to those producing other cytokines) were the best indicator of functional CD8 T cells. Our results demonstrate that HIV-1-specific IL-21-producing CD8 T cells are induced following primary infection and enriched in elite controllers, suggesting a critical role for these cells in the maintenance of viremia control.
Journal of Experimental Medicine | 2010
Anju Bansal; Jonathan M. Carlson; Jiyu Yan; Olusimidele T. Akinsiku; Malinda Schaefer; Steffanie Sabbaj; Anne Bet; David N. Levy; Sonya L. Heath; Jianming Tang; Richard A. Kaslow; Bruce D. Walker; Thumbi Ndung'u; Philip J. R. Goulder; David Heckerman; Eric Hunter; Paul A. Goepfert
Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity.
Journal of Virology | 2008
Anju Bansal; Bethany Jackson; Kim West; Shixia Wang; Shan Lu; Jeffrey S. Kennedy; Paul A. Goepfert
ABSTRACT A phase I clinical vaccine study of a human immunodeficiency virus type 1 (HIV-1) vaccine regimen comprising a DNA prime formulation (5-valent env and monovalent gag) followed by a 5-valent Env protein boost for seronegative adults was previously shown to induce HIV-1-specific T cells and anti-Env antibodies capable of neutralizing cross-clade viral isolates. In light of these initial findings, we sought to more fully characterize the HIV-1-specific T cells by using polychromatic flow cytometry. Three groups of participants were vaccinated three times with 1.2 mg of DNA administered intradermally (i.d.; group A), 1.2 mg of DNA administered intramuscularly (i.m.; group B), or 7.2 mg of DNA administered i.m. (high-dose group C) each time. Each group subsequently received one or two doses of 0.375 mg each of the gp120 protein boost vaccine (i.m.). Env-specific CD4 T-cell responses were seen in the majority of participants; however, the kinetics of responses differed depending on the route of DNA administration. The high i.m. dose induced the responses of the greatest magnitude after the DNA vaccinations, while the i.d. group exhibited the responses of the least magnitude. Nevertheless, after the second protein boost, the magnitude of CD4 T-cell responses in the i.d. group was indistinguishable from those in the other two groups. After the DNA vaccinations and the first protein boost, a greater number of polyfunctional Env-specific CD4 T cells (those with ≥2 functions) were seen in the high-dose group than in the other groups. Gag-specific CD4 T cells and Env-specific CD8 T cells were seen only in the high-dose group. These findings demonstrate that the route and dose of DNA vaccines significantly impact the quality of immune responses, yielding important information for future vaccine design.
Journal of Acquired Immune Deficiency Syndromes | 2011
Olusimidele T. Akinsiku; Anju Bansal; Steffanie Sabbaj; Sonya L. Heath; Paul A. Goepfert
Background: Assays to measure the induction of HIV-1-specific CD8 T-cell responses often rely on measurements of indirect effector function such as chemokine and cytokine production, which may not reflect direct elimination of an invading pathogen. Assessment of the functional ability of CD8 T cells to suppress HIV-1 replication has been viewed as a surrogate marker of an effectual immune response. To further investigate this, we measured the capacity of virus-specific CD8 T cells to inhibit HIV-1 replication in an in vitro suppression assay. Methods: We expanded 15 epitope-specific CD8 T-cell lines from peripheral blood mononuclear cells of chronically HIV--infected progressors (n = 5) and controllers (n = 4) who were not on antiretroviral therapy. Cell lines were tested for their ability to produce effector molecules (CD107a, IL-2, IFN-γ, TNF-α, perforin) and suppress virus replication in autologous CD4 T cells. Results: CD8 T-cell lines from both progressors and controllers had largely similar effector function profiles as determined by intracellular cytokine staining. In contrast, we observed that CD8 T-cell lines derived from controllers show enhanced virus suppression when compared with progressors. Virus suppression was mediated in an major histocompatibility complex-dependent manner and found to correlate with a polyfunctional IL-2+ CD8 T-cell response. Conclusions: Using a sensitive in vitro suppression assay, we demonstrate that CD8 T-cell-mediated suppression of HIV-1 replication is a marker of HIV-1 control. Suppressive capacity was found to correlate with polyfunctional IL-2 production. Assessment of CD8 T-cell-mediated suppression may be an important tool to evaluate vaccine-induced responses.
Journal of Acquired Immune Deficiency Syndromes | 2003
Steffanie Sabbaj; Anju Bansal; G.Douglas Ritter; Christopher Perkins; Bradley H. Edwards; Ethan Gough; Jianming Tang; James Szinger; Bette Korber; Craig M. Wilson; Richard A. Kaslow; Mark J. Mulligan; Paul A. Goepfert
Vaccines designed to bring forth CD8+ T cell responses in different racial and ethnic groups will require inclusion of T cell epitopes presented by various MHC class I molecules. This study was designed to identify new CD8+ T cell epitopes in HIV-infected African American and Hispanic youth as well as to determine the frequency of responses to both novel and previously described HIV-1 epitopes in a cohort of racially and ethnically diverse individuals. We found 8 MHC class I-restricted CD8+ T cell epitopes that had not been previously described, another 8 epitopes that were restricted by class I alleles not previously associated with these epitopes, and 8 additional epitopes that have been described previously. In a larger cohort, we demonstrated that 11 (69%) of these 16 newly described immunogens were recognized by individuals of different race or ethnicity. Most HIV-1-specific CD8+ T cell epitopes identified were either novel or restricted by alternative MHC class I alleles. Frequent recognition of several of these CTL epitopes in persons of diverse racial backgrounds bodes well for the development of a broadly reactive HIV-1 vaccine.
Retrovirology | 2016
Chi N. Chan; Benjamin Trinité; Caroline S. Lee; Saurabh Mahajan; Akanksha Anand; Dominik Wodarz; Steffanie Sabbaj; Anju Bansal; Paul A. Goepfert; David N. Levy
BackgroundHIV-1 integration is prone to a high rate of failure, resulting in the accumulation of unintegrated viral genomes (uDNA) in vivo and in vitro. uDNA can be transcriptionally active, and circularized uDNA genomes are biochemically stable in non-proliferating cells. Resting, non-proliferating CD4 T cells are prime targets of HIV-1 infection and latently infected resting CD4 T cells are the major barrier to HIV cure. Our prior studies demonstrated that uDNA generates infectious virions when T cell activation follows rather than precedes infection.ResultsHere, we characterize in primary resting CD4 T cells the dynamics of integrated and unintegrated virus expression, genome persistence and sensitivity to latency reversing agents. Unintegrated HIV-1 was abundant in directly infected resting CD4 T cells. Maximal gene expression from uDNA was delayed compared with integrated HIV-1 and was less toxic, resulting in uDNA enrichment over time relative to integrated proviruses. Inhibiting integration with raltegravir shunted the generation of durable latency from integrated to unintegrated genomes. Latent uDNA was activated to de novo virus production by latency reversing agents that also activated latent integrated proviruses, including PKC activators, histone deacetylase inhibitors and P-TEFb agonists. However, uDNA responses displayed a wider dynamic range, indicating differential regulation of expression relative to integrated proviruses. Similar to what has recently been demonstrated for latent integrated proviruses, one or two applications of latency reversing agents failed to activate all latent unintegrated genomes. Unlike integrated proviruses, uDNA gene expression did not down modulate expression of HLA Class I on resting CD4 T cells. uDNA did, however, efficiently prime infected cells for killing by HIV-1-specific cytotoxic T cells.ConclusionsThese studies demonstrate that contributions by unintegrated genomes to HIV-1 gene expression, virus production, latency and immune responses are inherent properties of the direct infection of resting CD4 T cells. Experimental models of HIV-1 latency employing directly infected resting CD4 T cells should calibrate the contribution of unintegrated HIV-1.
AIDS | 2007
Anju Bansal; Ling Yue; Joan A. Conway; Karina Yusim; Jianming Tang; John C. Kappes; Richard A. Kaslow; Craig M. Wilson; Paul A. Goepfert
Background:Differential protein targeting by HIV-specific CD8 T cells is associated with disparate plasma viral loads; however, it is unclear if the quality of these responses differs depending upon the specificity of the targeted epitopes. Methods:We examined HIV-specific CD8 T-cell responses in HIV-infected adolescents carrying either an HLA class I allele associated with a favorable prognosis (HLA-B*57) or an allele associated with usual disease progression (HLA-B*35 or HLA-B*53) using interferon-γ ELISpot and ICS assays. Results:In an interferon-γ ELISpot assay, p24 was the dominant protein targeted by B*57 carriers while responses to Nef dominated in B*35 or B*53 positive carriers. This differential protein targeting did not change during 4 years of follow-up. In these chronically infected adolescents, there were no significant differences in the quality of the immunodominant T-cell responses between the B*57 and B*35/B*53 carriers as measured by peptide avidity, degranulation, and immune memory markers. There was a trend towards higher expression of interleukin-2 from B*57-KF11 restricted CD8 T cells although this difference was not significant. Nevertheless both B*57 and B*35/53-restricted responses were relatively potent as reflected by the propensity of CD8 T cells to escape in p24 and Nef, respectively. Conclusions:Differential protein targeting rather than the quality of T-cell responses appears to be a major distinguishing feature of HIV-specific CD8 T cells induced in B*57 carriers. These data suggest that viral fitness costs associated with CD8 T-cell pressure is an important factor determining differences in the viral load among HIV-infected patients.
AIDS | 2008
J. Michael Kilby; Ha Youn Lee; J. Darren Hazelwood; Anju Bansal; R. Patterson Bucy; Michael S. Saag; George M. Shaw; Edward P. Acosta; Victoria A. Johnson; Alan S. Perelson; Paul A. Goepfert
Objective:Compare the initial phases of virologic decay when acute/early and advanced HIV-infected adults are administered the same treatment regimen. Design:Mathematical modeling of a previously completed prospective treatment pilot study involving treatment-naive patients with early and advanced immunosuppression. Methods:We analyzed data from a treatment protocol in which 18 individuals with acute or recent HIV-1 seroconversion and six patients with advanced AIDS were administered the same four-drug antiretroviral regimen. Initial treatment responses were compared by fitting a mathematical model to frequent viral load measurements in order to calculate the first and second phase kinetics of viral clearance, and also by comparing viral load suppression over 24 weeks. Patients were also comprehensively compared in terms of protease inhibitor drug levels, HIV-specific immune responses at baseline, and the presence of drug resistance-conferring mutations. Results:There was no statistically meaningful difference in first phase clearance of comparable high-level viremia in the two groups, whether protease inhibitor levels were inserted into the model or 100% antiviral drug effectiveness was assumed. In contrast, acute/early patients had inferior sustained responses than advanced patients, reflecting erratic adherence. Conclusions:Despite many years of intervening immune destruction, the initial virologic decay on therapy appears to be the same at the extremes of the HIV disease spectrum.
Molecular Therapy | 2010
Sandesh Subramanya; Myriam Armant; Janelle R. Salkowitz; Am Nyakeriga; Viraga Haridas; Maroof Hasan; Anju Bansal; Paul A. Goepfert; Katherine K. Wynn; Kristin Ladell; David A. Price; N. Manjunath; June Kan-Mitchell; Premlata Shankar
Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in the activation of T cells. RNA interference (RNAi)-mediated silencing of negative immunoregulatory molecules expressed by DCs may provide a strategy to enhance the potency of DC-based vaccines and immunotherapy. Ablation of suppressor of cytokine signaling-1 (SOCS-1) in antigen-presenting cells has been shown to enhance cellular immune response in mice. Here, we used a previously reported DC-targeting approach to deliver small interfering RNA (siRNA) against SOCS-1 to human myeloid-derived DCs (MDDCs). SOCS1-silencing in MDDCs resulted in enhanced cytokine responses to lipopolysaccharide (LPS) and a strong mixed-lymphocyte reaction. Moreover, only DCs treated with SOCS-1 siRNA, and not controls, elicited strong primary in vitro responses to well-characterized HLA-A*0201-restricted Melan-A/MART-1 and human immunodeficiency virus (HIV) Gag epitopes in naive CD8(+) T cells from healthy donors. Finally, stimulation of CD8(+) T cells from HIV-seropositive subjects with SOCS1-silenced DCs resulted in an augmented polyfunctional cytotoxic T-lymphocyte (CTL) response, suggesting that SOCS-1 silencing can restore functionally compromised T cells in HIV infection. Collectively, these results demonstrate the feasibility of DC3-9dR-mediated manipulation of DC function to enhance DC immunogenicity for potential vaccine or immunotherapeutic applications.Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in the activation of T cells. RNA interference (RNAi)-mediated silencing of negative immunoregulatory molecules expressed by DCs may provide a strategy to enhance the potency of DC-based vaccines and immunotherapy. Ablation of suppressor of cytokine signaling-1 (SOCS-1) in antigen-presenting cells has been shown to enhance cellular immune response in mice. Here, we used a previously reported DC-targeting approach to deliver small interfering RNA (siRNA) against SOCS-1 to human myeloid-derived DCs (MDDCs). SOCS1-silencing in MDDCs resulted in enhanced cytokine responses to lipopolysaccharide (LPS) and a strong mixed-lymphocyte reaction. Moreover, only DCs treated with SOCS-1 siRNA, and not controls, elicited strong primary in vitro responses to well-characterized HLA-A*0201-restricted Melan-A/MART-1 and human immunodeficiency virus (HIV) Gag epitopes in naive CD8+ T cells from healthy donors. Finally, stimulation of CD8+ T cells from HIV-seropositive subjects with SOCS1-silenced DCs resulted in an augmented polyfunctional cytotoxic T-lymphocyte (CTL) response, suggesting that SOCS-1 silencing can restore functionally compromised T cells in HIV infection. Collectively, these results demonstrate the feasibility of DC3-9dR-mediated manipulation of DC function to enhance DC immunogenicity for potential vaccine or immunotherapeutic applications.
The Journal of Infectious Diseases | 2007
Steffanie Sabbaj; Sonya L. Heath; Anju Bansal; Sameera Vohra; J. Michael Kilby; Allan J. Zajac; Paul A. Goepfert
The importance of functional CD4+ T cells and antigen control in the maintenance of CD127 expression on antigen-specific CD8+ T cells is poorly understood in humans. We compared CD127 expression on antigen-specific CD8+ T cells in 4 groups of human immunodeficiency virus (HIV)-infected patients. This analysis demonstrated that HIV-specific CD8+ CD127(hi) T cells are maintained as long-lived memory cells only in HIV-infected individuals treated early with antiretroviral therapy (ART). This population of CD127(hi) T cells fluctuates with viral load (VL) such that the antigen-specific T cell pool oscillates from a CD127(hi) memory to a CD127(lo) effector phenotype depending on the levels of plasma VL. In individuals with chronic infection, the CD127(hi) pool diminishes or is lost with time despite virologic control while receiving ART. These studies show that functionally competent subsets of antigen-specific memory CD8+ T cells in HIV-infected individuals are maintained but only if control of viremia is attained early during the course of infection.