Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Hunter is active.

Publication


Featured researches published by Eric Hunter.


Nature Medicine | 1998

Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry.

J. Michael Kilby; Samuel E. Hopkins; Thomas Venetta; Betty DiMassimo; Gretchen A. Cloud; Jeannette Y. Lee; Leslie Alldredge; Eric Hunter; Dennis M. Lambert; Dani P. Bolognesi; Thomas J. Matthews; M. Ross Johnson; Martin A. Nowak; George M. Shaw; Michael S. Saag

T-20, a synthetic peptide corresponding to a region of the transmembrane subunit of the HIV-1 envelope protein, blocks cell fusion and viral entry at concentrations of less than 2 ng/ml in vitro. We administered intravenous T-20 (monotherapy) for 14 days to sixteen HIV-infected adults in four dose groups (3, 10, 30 and 100 mg twice daily). There were significant, dose-related declines in plasma HIV RNA in all subjects who received higher dose levels. All four subjects receiving 100 mg twice daily had a decline in plasma HIV RNA to less than 500 copies/ml, by bDNA assay. A sensitive RT–PCR assay (detection threshold 40 copies/ml) demonstrated that, although undetectable levels were not achieved in the 14-day dosing period, there was a 1.96 log10 median decline in plasma HIV RNA in these subjects. This study provides proof-of-concept that viral entry can be successfully blocked in vivo. Short-term administration of T-20 seems safe and provides potent inhibition of HIV replication comparable to anti-retroviral regimens approved at present.


Journal of Virology | 2000

Sensitivity of Human Immunodeficiency Virus Type 1 to the Fusion Inhibitor T-20 Is Modulated by Coreceptor Specificity Defined by the V3 Loop of gp120

Cynthia A. Derdeyn; Julie M. Decker; Jeffrey N. Sfakianos; Xiaoyun Wu; William A. O'Brien; Lee Ratner; John C. Kappes; George M. Shaw; Eric Hunter

ABSTRACT T-20 is a synthetic peptide that potently inhibits replication of human immunodeficiency virus type 1 by interfering with the transition of the transmembrane protein, gp41, to a fusion active state following interactions of the surface glycoprotein, gp120, with CD4 and coreceptor molecules displayed on the target cell surface. Although T-20 is postulated to interact with an N-terminal heptad repeat within gp41 in a trans-dominant manner, we show here that sensitivity to T-20 is strongly influenced by coreceptor specificity. When 14 T-20-naive primary isolates were analyzed for sensitivity to T-20, the mean 50% inhibitory concentration (IC50) for isolates that utilize CCR5 for entry (R5 viruses) was 0.8 log10 higher than the mean IC50 for CXCR4 (X4) isolates (P = 0.0055). Using NL4.3-based envelope chimeras that contain combinations of envelope sequences derived from R5 and X4 viruses, we found that determinants of coreceptor specificity contained within the gp120 V3 loop modulate this sensitivity to T-20. The IC50 for all chimeric envelope viruses containing R5 V3 sequences was 0.6 to 0.8 log10higher than that for viruses containing X4 V3 sequences. In addition, we confirmed that the N-terminal heptad repeat of gp41 determines the baseline sensitivity to T-20 and that the IC50 for viruses containing GIV at amino acid residues 36 to 38 was 1.0 log10 lower than the IC50 for viruses containing a G-to-D substitution. The results of this study show that gp120-coreceptor interactions and the gp41 N-terminal heptad repeat independently contribute to sensitivity to T-20. These results have important implications for the therapeutic uses of T-20 as well as for unraveling the complex mechanisms of virus fusion and entry.


Journal of Experimental Medicine | 2009

Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection.

Jesus F. Salazar-Gonzalez; Maria G. Salazar; Brandon F. Keele; Gerald H. Learn; Elena E. Giorgi; Hui Li; Julie M. Decker; Shuyi Wang; Joshua Baalwa; Matthias H. Kraus; Nicholas F. Parrish; Katharina S. Shaw; M. Brad Guffey; Katharine J. Bar; Katie L. Davis; Christina Ochsenbauer-Jambor; John C. Kappes; Michael S. Saag; Myron S. Cohen; Joseph Mulenga; Cynthia A. Derdeyn; Susan Allen; Eric Hunter; Martin Markowitz; Peter Hraber; Alan S. Perelson; Tanmoy Bhattacharya; Barton F. Haynes; Bette T. Korber; Beatrice H. Hahn

Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4+ T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12–20 mo, viruses exhibited concentrated mutations at 17–34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses.


Journal of Virology | 2008

Deciphering Human Immunodeficiency Virus Type 1 Transmission and Early Envelope Diversification by Single-Genome Amplification and Sequencing

Jesus F. Salazar-Gonzalez; Elizabeth Bailes; Kimmy T. Pham; Maria G. Salazar; M. Brad Guffey; Brandon F. Keele; Cynthia A. Derdeyn; Paul Farmer; Eric Hunter; Susan Allen; Olivier Manigart; Joseph Mulenga; Jeffrey A. Anderson; Ronald Swanstrom; Barton F. Haynes; Gayathri Athreya; Bette T. Korber; Paul M. Sharp; George M. Shaw; Beatrice H. Hahn

ABSTRACT Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 × 10−5. Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 × 10−5 substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics

Jacqueline D. Reeves; Stephen A. Gallo; Navid Ahmad; John L. Miamidian; Phoebe E. Harvey; Matthew Sharron; Stefan Pöhlmann; Jeffrey N. Sfakianos; Cynthia A. Derdeyn; Robert Blumenthal; Eric Hunter; Robert W. Doms

HIV entry inhibitors include coreceptor antagonists and the fusion inhibitor T-20. T-20 binds the first helical region (HR1) in the gp41 subunit of the viral envelope (Env) protein and prevents conformational changes required for membrane fusion. HR1 appears to become accessible to T-20 after Env binds CD4, whereas coreceptor binding is thought to induce the final conformational changes that lead to membrane fusion. Thus, T-20 binds to a structural intermediate of the fusion process. Primary viruses exhibit considerable variability in T-20 sensitivity, and determinants outside of HR1 can affect sensitivity by unknown mechanisms. We studied chimeric Env proteins containing different V3 loop sequences and found that gp120/coreceptor affinity correlated with T-20 and coreceptor antagonist sensitivity, with greater affinity resulting in increased resistance to both classes of entry inhibitors. Enhanced affinity resulted in more rapid fusion kinetics, reducing the time during which Env is sensitive to T-20. Reduced coreceptor expression levels also delayed fusion kinetics and enhanced virus sensitivity to T-20, whereas increased coreceptor levels had the opposite effect. A single amino acid change (K421D) in the bridging sheet region of the primary virus strain YU2 reduced affinity for CCR5 and increased T-20 sensitivity by about 30-fold. Thus, mutations in Env that affect receptor engagement and membrane fusion rates can alter entry inhibitor sensitivity. Because coreceptor expression levels are typically limiting in vivo, individuals who express lower coreceptor levels may respond more favorably to entry inhibitors such as T-20, whose effectiveness we show depends in part on fusion kinetics.


Nature | 2009

Adaptation of HIV-1 to human leukocyte antigen class I

Y Kawashima; K. Pfafferott; John Frater; Philippa C. Matthews; Rebecca Payne; M. M. Addo; Hiroyuki Gatanaga; Mamoru Fujiwara; Atsuko Hachiya; Hirokazu Koizumi; Nozomi Kuse; Shinichi Oka; Anna Duda; Andrew J. Prendergast; Hayley Crawford; A Leslie; Zabrina L. Brumme; Chanson J. Brumme; Todd M. Allen; Christian Brander; Richard A. Kaslow; Jianming Tang; Eric Hunter; Susan Allen; Joseph Mulenga; S. Branch; T Roach; M. John; S. Mallal; Anthony Ogwu

The rapid and extensive spread of the human immunodeficiency virus (HIV) epidemic provides a rare opportunity to witness host–pathogen co-evolution involving humans. A focal point is the interaction between genes encoding human leukocyte antigen (HLA) and those encoding HIV proteins. HLA molecules present fragments (epitopes) of HIV proteins on the surface of infected cells to enable immune recognition and killing by CD8+ T cells; particular HLA molecules, such as HLA-B*57, HLA-B*27 and HLA-B*51, are more likely to mediate successful control of HIV infection. Mutation within these epitopes can allow viral escape from CD8+ T-cell recognition. Here we analysed viral sequences and HLA alleles from >2,800 subjects, drawn from 9 distinct study cohorts spanning 5 continents. Initial analysis of the HLA-B*51-restricted epitope, TAFTIPSI (reverse transcriptase residues 128–135), showed a strong correlation between the frequency of the escape mutation I135X and HLA-B*51 prevalence in the 9 study cohorts (P = 0.0001). Extending these analyses to incorporate other well-defined CD8+ T-cell epitopes, including those restricted by HLA-B*57 and HLA-B*27, showed that the frequency of these epitope variants (n = 14) was consistently correlated with the prevalence of the restricting HLA allele in the different cohorts (together, P < 0.0001), demonstrating strong evidence of HIV adaptation to HLA at a population level. This process of viral adaptation may dismantle the well-established HLA associations with control of HIV infection that are linked to the availability of key epitopes, and highlights the challenge for a vaccine to keep pace with the changing immunological landscape presented by HIV.


Journal of Virology | 2006

Genetic and Neutralization Properties of Subtype C Human Immunodeficiency Virus Type 1 Molecular env Clones from Acute and Early Heterosexually Acquired Infections in Southern Africa

Ming Li; Jesus F. Salazar-Gonzalez; Cynthia A. Derdeyn; Lynn Morris; Carolyn Williamson; James E. Robinson; Julie M. Decker; Yingying Li; Maria G. Salazar; Victoria R. Polonis; Koleka Mlisana; Salim Safurdeen. Abdool Karim; Kunxue Hong; Kelli M. Greene; Miroslawa Bilska; Jintao Zhou; Susan Allen; Elwyn Chomba; Joseph Mulenga; Cheswa Vwalika; Feng Gao; Ming Zhang; Bette Korber; Eric Hunter; Beatrice H. Hahn; David C. Montefiori

ABSTRACT A standard panel of subtype C human immunodeficiency virus type 1 (HIV-1) Env-pseudotyped viruses was created by cloning, sequencing, and characterizing functional gp160 genes from 18 acute and early heterosexually acquired infections in South Africa and Zambia. In general, the gp120 region of these clones was shorter (most evident in V1 and V4) and less glycosylated compared to newly transmitted subtype B viruses, and it was underglycosylated but no different in length compared to chronic subtype C viruses. The gp120s also exhibited low amino acid sequence variability (12%) in V3 and high variability (39%) immediately downstream of V3, a feature shared with newly transmitted subtype B viruses and chronic viruses of both subtypes. When tested as Env-pseudotyped viruses in a luciferase reporter gene assay, all clones possessed an R5 phenotype and resembled primary isolates in their sensitivity to neutralization by HIV-1-positive plasmas. Results obtained with a multisubtype plasma panel suggested partial subtype preference in the neutralizing antibody response to infection. The clones were typical of subtype C in that all were resistant to 2G12 (associated with loss of N-glycosylation at position 295) and most were resistant to 2F5, but all were sensitive to 4E10 and many were sensitive to immunoglobulin G1b12. Finally, conserved neutralization epitopes in the CD4-induced coreceptor binding domain of gp120 were poorly accessible and were difficult to induce and stabilize with soluble CD4 on Env-pseudotyped viruses. These results illustrate key genetic and antigenic properties of subtype C HIV-1 that might impact the design and testing of candidate vaccines. A subset of these gp160 clones are suitable for use as reference reagents to facilitate standardized assessments of vaccine-elicited neutralizing antibody responses.


Cell | 1986

Nucleotide sequence of Mason-Pfizer monkey virus: An immunosuppressive D-type retrovirus

Pierre Sonigo; Christopher S. Barker; Eric Hunter; Simon Wain-Hobson

The genetic structure of Mason-Pfizer monkey virus (MPMV), a D-type retrovirus, has been determined. In addition to the viral gag, pol, and env genes is an ORF overlapping both gag and pol and that encodes the viral protease. Surprisingly, the MPMV env protein is highly homologous to that of the avian C-type virus, reticuloendotheliosis associated virus REV-A. The env sequence encodes an immunosuppressive peptide, which suggests that MPMV, like REV-A, may transiently induce a T-suppressor cell population. The different phylogenies of the MPMV pol and env genes indicate a recombinatorial origin for the D-type viruses. Sequence comparisons show that SRV-1, an MPMV-like virus etiologically linked to simian AIDS (SAIDS), is in fact a variant of MPMV. While MPMV-like viruses cannot be used as direct models for the AIDS/SAIDS associated with lentiviruses, they provide an important system for studying the molecular basis of immunosuppressive diseases in primates.


PLOS Pathogens | 2009

Inflammatory Genital Infections Mitigate a Severe Genetic Bottleneck in Heterosexual Transmission of Subtype A and C HIV-1

Richard E. Haaland; Paulina Hawkins; Jesus F. Salazar-Gonzalez; Amber Johnson; Amanda Tichacek; Etienne Karita; Olivier Manigart; Joseph Mulenga; Brandon F. Keele; George M. Shaw; Beatrice H. Hahn; Susan Allen; Cynthia A. Derdeyn; Eric Hunter

The HIV-1 epidemic in sub-Saharan Africa is driven largely by heterosexual transmission of non-subtype B viruses, of which subtypes C and A are predominant. Previous studies of subtype B and subtype C transmission pairs have suggested that a single variant from the chronically infected partner can establish infection in their newly infected partner. However, in subtype A infected individuals from a sex worker cohort and subtype B individuals from STD clinics, infection was frequently established by multiple variants. This study examined over 1750 single-genome amplified viral sequences derived from epidemiologically linked subtype C and subtype A transmission pairs very early after infection. In 90% (18/20) of the pairs, HIV-1 infection is initiated by a single viral variant that is derived from the quasispecies of the transmitting partner. In addition, the virus initiating infection in individuals who were infected by someone other than their spouse was characterized to determine if genital infections mitigated the severe genetic bottleneck observed in a majority of epidemiologically linked heterosexual HIV-1 transmission events. In nearly 50% (3/7) of individuals infected by someone other than their spouse, multiple genetic variants from a single individual established infection. A statistically significant association was observed between infection by multiple genetic variants and an inflammatory genital infection in the newly infected individual. Thus, in the vast majority of HIV-1 transmission events in cohabiting heterosexual couples, a single genetic variant establishes infection. Nevertheless, this severe genetic bottleneck can be mitigated by the presence of inflammatory genital infections in the at risk partner, suggesting that this restriction on genetic diversity is imposed in large part by the mucosal barrier.


Journal of Experimental Medicine | 2005

Antigenic conservation and immunogenicity of the HIV coreceptor binding site

Julie M. Decker; Frederic Bibollet-Ruche; Xiping Wei; Shuyi Wang; David N. Levy; Wenquan Wang; Eric Delaporte; Martine Peeters; Cynthia A. Derdeyn; Susan Allen; Eric Hunter; Michael S. Saag; James A. Hoxie; Beatrice H. Hahn; Peter D. Kwong; James E. Robinson; George M. Shaw

Immunogenic, broadly reactive epitopes of the HIV-1 envelope glycoprotein could serve as important targets of the adaptive humoral immune response in natural infection and, potentially, as components of an acquired immune deficiency syndrome vaccine. However, variability in exposed epitopes and a combination of highly effective envelope-cloaking strategies have made the identification of such epitopes problematic. Here, we show that the chemokine coreceptor binding site of HIV-1 from clade A, B, C, D, F, G, and H and circulating recombinant form (CRF)01, CRF02, and CRF11, elicits high titers of CD4-induced (CD4i) antibody during natural human infection and that these antibodies bind and neutralize viruses as divergent as HIV-2 in the presence of soluble CD4 (sCD4). 178 out of 189 (94%) HIV-1–infected patients had CD4i antibodies that neutralized sCD4-pretreated HIV-2 in titers (50% inhibitory concentration) as high as 1:143,000. CD4i monoclonal antibodies elicited by HIV-1 infection also neutralized HIV-2 pretreated with sCD4, and polyclonal antibodies from HIV-1–infected humans competed specifically with such monoclonal antibodies for binding. In vivo, variants of HIV-1 with spontaneously exposed coreceptor binding surfaces were detected in human plasma; these viruses were neutralized directly by CD4i antibodies. Despite remarkable evolutionary diversity among primate lentiviruses, functional constraints on receptor binding create opportunities for broad humoral immune recognition, which in turn serves to constrain the viral quasispecies.

Collaboration


Dive into the Eric Hunter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianming Tang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Karita

International AIDS Vaccine Initiative

View shared research outputs
Top Co-Authors

Avatar

Richard A. Kaslow

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Paul A. Goepfert

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jill Gilmour

International AIDS Vaccine Initiative

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge