Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Becker is active.

Publication


Featured researches published by Anke Becker.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021

Delphine Capela; Frédérique Barloy-Hubler; Jérôme Gouzy; Gordana Bothe; Frédéric Ampe; Jacques Batut; Pierre Boistard; Anke Becker; Marc Boutry; Edouard Cadieu; Stéphane Dréano; Stéphanie Gloux; Thérèse Godrie; André Goffeau; Daniel Kahn; Ernö Kiss; Valérie Lelaure; David Masuy; Thomas Pohl; Daniel Portetelle; Alfred Pühler; Bénédicte Purnelle; Ulf Ramsperger; Clotilde Renard; Patricia Thebault; Micheline Vandenbol; Stefan Weidner; Francis Galibert

Sinorhizobium meliloti is an α-proteobacterium that forms agronomically important N2-fixing root nodules in legumes. We report here the complete sequence of the largest constituent of its genome, a 62.7% GC-rich 3,654,135-bp circular chromosome. Annotation allowed assignment of a function to 59% of the 3,341 predicted protein-coding ORFs, the rest exhibiting partial, weak, or no similarity with any known sequence. Unexpectedly, the level of reiteration within this replicon is low, with only two genes duplicated with more than 90% nucleotide sequence identity, transposon elements accounting for 2.2% of the sequence, and a few hundred short repeated palindromic motifs (RIME1, RIME2, and C) widespread over the chromosome. Three regions with a significantly lower GC content are most likely of external origin. Detailed annotation revealed that this replicon contains all housekeeping genes except two essential genes that are located on pSymB. Amino acid/peptide transport and degradation and sugar metabolism appear as two major features of the S. meliloti chromosome. The presence in this replicon of a large number of nucleotide cyclases with a peculiar structure, as well as of genes homologous to virulence determinants of animal and plant pathogens, opens perspectives in the study of this bacterium both as a free-living soil microorganism and as a plant symbiont.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti

Turlough M. Finan; Stefan Weidner; Kim Wong; Jens Buhrmester; Patrick Chain; Frank J. Vorhölter; Ismael Hernández-Lucas; Anke Becker; Alison Cowie; Jérôme Gouzy; Brian Golding; Alfred Pühler

Analysis of the 1,683,333-nt sequence of the pSymB megaplasmid from the symbiotic N2-fixing bacterium Sinorhizobium meliloti revealed that the replicon has a high gene density with a total of 1,570 protein-coding regions, with few insertion elements and regions duplicated elsewhere in the genome. The only copies of an essential arg-tRNA gene and the minCDE genes are located on pSymB. Almost 20% of the pSymB sequence carries genes encoding solute uptake systems, most of which were of the ATP-binding cassette family. Many previously unsuspected genes involved in polysaccharide biosynthesis were identified and these, together with the two known distinct exopolysaccharide synthesis gene clusters, show that 14% of the pSymB sequence is dedicated to polysaccharide synthesis. Other recognizable gene clusters include many involved in catabolic activities such as protocatechuate utilization and phosphonate degradation. The functions of these genes are consistent with the notion that pSymB plays a major role in the saprophytic competence of the bacteria in the soil environment.


Plant Physiology | 2005

Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza

Natalija Hohnjec; Martin F. Vieweg; Alfred Pühler; Anke Becker; Helge Küster

Arbuscular mycorrhiza (AM) is a widespread symbiotic association between plants and fungal microsymbionts that supports plant development under nutrient-limiting and various stress conditions. In this study, we focused on the overlapping genetic program activated by two commonly studied microsymbionts in addition to identifying AM-related genes. We thus applied 16,086 probe microarrays to profile the transcriptome of the model legume Medicago truncatula during interactions with Glomus mosseae and Glomus intraradices and specified a total of 201 plant genes as significantly coinduced at least 2-fold, with more than 160 being reported as AM induced for the first time. Several hundred genes were additionally up-regulated during a sole interaction, indicating that the plant genetic program activated in AM to some extent depends on the colonizing microsymbiont. Genes induced during both interactions specified AM-related nitrate, ion, and sugar transporters, enzymes involved in secondary metabolism, proteases, and Kunitz-type protease inhibitors. Furthermore, coinduced genes encoded receptor kinases and other components of signal transduction pathways as well as AM-induced transcriptional regulators, thus reflecting changes in signaling. By the use of reporter gene expression, we demonstrated that one member of the AM-induced gene family encoding blue copper binding proteins (MtBcp1) was both specifically and strongly up-regulated in arbuscule-containing regions of mycorrhizal roots. A comparison of the AM expression profiles to those of nitrogen-fixing root nodules suggested only a limited overlap between the genetic programs orchestrating root endosymbioses.


Applied Microbiology and Biotechnology | 1998

Xanthan gum biosynthesis and application: a biochemical /genetic perspective

Anke Becker; F Katzen; Alfred Pühler; Luis Ielpi

Abstract Xanthan gum is a complex exopolysaccharide produced by the plant-pathogenic bacterium Xanthomonas campestris pv. campestris. It consists of D-glucosyl, D-mannosyl, and D-glucuronyl acid residues in a molar ratio of 2:2:1 and variable proportions of O-acetyl and pyruvyl residues. Because of its physical properties, it is widely used as a thickener or viscosifier in both food and non-food industries. Xanthan gum is also used as a stabilizer for a wide variety of suspensions, emulsions, and foams. This article outlines aspects of the biochemical assembly and genetic loci involved in its biosynthesis, including the synthesis of the sugar nucleotide substrates, the building and decoration of the pentasaccharide subunit, and the polymerization and secretion of the polymer. An overview of the applications and industrial production of xanthan is also covered.


Plant Physiology | 2004

Expression Profiling in Medicago truncatula Identifies More Than 750 Genes Differentially Expressed during Nodulation, Including Many Potential Regulators of the Symbiotic Program

Fikri El Yahyaoui; Helge Küster; Besma Ben Amor; Natalija Hohnjec; Alfred Pühler; Anke Becker; Jérôme Gouzy; Tatiana Vernié; Clare Gough; Andreas Niebel; Laurence Godiard; Pascal Gamas

In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are good candidates to play a role in the regulation of the symbiotic program. This represents substantial progress toward a better understanding of this complex developmental program.


Molecular Plant-microbe Interactions | 2004

Global Changes in Gene Expression in Sinorhizobium meliloti 1021 under Microoxic and Symbiotic Conditions

Anke Becker; Hélène Bergès; Elizaveta Krol; Claude Bruand; Silvia Rüberg; Delphine Capela; Emmanuelle Lauber; Eliane Meilhoc; Frédéric Ampe; Frans J. de Bruijn; Joëlle Fourment; Anne Francez-Charlot; Daniel Kahn; Helge Küster; Carine Liebe; Alfred Pühler; Stefan Weidner; Jacques Batut

Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including potential regulators, that may play a role in symbiosis were identified. Transcriptome profiling in response to oxygen limitation indicated that up to 5% of the genes were oxygen regulated. However, the microoxic and bacteroid transcriptomes only partially overlap, implying that oxygen contributes to a limited extent to the control of symbiotic gene expression.


Journal of Biotechnology | 2008

The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis

Frank-Jörg Vorhölter; Susanne Schneiker; Alexander Goesmann; Lutz Krause; Thomas Bekel; Olaf Kaiser; Burkhard Linke; Thomas Patschkowski; Christian Rückert; Joachim Schmid; Vishaldeep Kaur Sidhu; Volker Sieber; Andreas Tauch; Steven Alexander Watt; Bernd Weisshaar; Anke Becker; Karsten Niehaus; Alfred Pühler

The complete genome sequence of the Xanthomonas campestris pv. campestris strain B100 was established. It consisted of a chromosome of 5,079,003bp, with 4471 protein-coding genes and 62 RNA genes. Comparative genomics showed that the genes required for the synthesis of xanthan and xanthan precursors were highly conserved among three sequenced X. campestris pv. campestris genomes, but differed noticeably when compared to the remaining four Xanthomonas genomes available. For the xanthan biosynthesis genes gumB and gumK earlier translational starts were proposed, while gumI and gumL turned out to be unique with no homologues beyond the Xanthomonas genomes sequenced. From the genomic data the biosynthesis pathways for the production of the exopolysaccharide xanthan could be elucidated. The first step of this process is the uptake of sugars serving as carbon and energy sources wherefore genes for 15 carbohydrate import systems could be identified. Metabolic pathways playing a role for xanthan biosynthesis could be deduced from the annotated genome. These reconstructed pathways concerned the storage and metabolization of the imported sugars. The recognized sugar utilization pathways included the Entner-Doudoroff and the pentose phosphate pathway as well as the Embden-Meyerhof pathway (glycolysis). The reconstruction indicated that the nucleotide sugar precursors for xanthan can be converted from intermediates of the pentose phosphate pathway, some of which are also intermediates of glycolysis or the Entner-Doudoroff pathway. Xanthan biosynthesis requires in particular the nucleotide sugars UDP-glucose, UDP-glucuronate, and GDP-mannose, from which xanthan repeat units are built under the control of the gum genes. The updated genome annotation data allowed reconsidering and refining the mechanistic model for xanthan biosynthesis.


Molecular Genetics and Genomics | 2004

Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011

Elizaveta Krol; Anke Becker

The global response to phosphate starvation was analysed at the transcriptional level in two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011. The Pho regulon is known to be induced by PhoB under conditions of phosphate limitation. Ninety-eight genes were found to be significantly induced (more than three-fold) in a phoB -dependent manner in phosphate-stressed cells, and phoB -independent repression of 86 genes was observed. Possible roles of these genes in the phosphate stress response are discussed. Twenty new putative PHO box sequences were identified in regions upstream of 17 of the transcriptional units that showed phoB -dependent, or partially phoB -dependent, regulation, indicating direct regulation of these genes by PhoB. Despite the overall similarity between the phosphate stress responses in Rm1021 and Rm2011, lower induction rates were found for a set of phoB -dependent genes in Rm1021. Moreover, Rm1021 exhibited moderate constitutive activation of 12 phosphate starvation-inducible, phoB -dependent genes when cells were grown in a complex medium. A 1-bp deletion was observed in the pstC ORF in Rm1021, which results in truncation of the protein product. This mutation is probably responsible for the expression of phosphate starvation-inducible genes in Rm1021 in the absence of phosphate stress.


Gene | 1995

New gentamicin-resistance and lacZ promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions

Anke Becker; Michael Schmidt; Wolfgang Jäger; Alfred Pühler

A set of antibiotic-resistance and promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions was constructed. The cassettes contain the aacC1 gene of transposon Tn1696 conferring resistance to gentamicin in a large variety of Gram- and Gram+ bacteria. In addition to the antibiotic-resistance gene, a promoterless Escherichia coli lacZ gene was included in the cassettes, allowing the determination of the transcriptional activity at the insertion site. The cassettes can be excised from a plasmid mediating ampicillin resistance by many commonly used restriction enzymes. The new constructs have been successfully used for mutagenesis and studies of gene transcription in Rhizobium meliloti.


International Journal of Systematic and Evolutionary Microbiology | 2011

Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons

Rainer Borriss; Xiao-Hua Chen; Christian Rueckert; Jochen Blom; Anke Becker; Birgit Baumgarth; Ben Fan; Rüdiger Pukall; Peter Schumann; Cathrin Spröer; Helmut Junge; Joachim Vater; Alfred Pühler; Hans-Peter Klenk

The whole-genome-sequenced rhizobacterium Bacillus amyloliquefaciens FZB42(T) (Chen et al., 2007) and other plant-associated strains of the genus Bacillus described as belonging to the species Bacillus amyloliquefaciens or Bacillus subtilis are used commercially to promote the growth and improve the health of crop plants. Previous investigations revealed that a group of strains represented a distinct ecotype related to B. amyloliquefaciens; however, the exact taxonomic position of this group remains elusive (Reva et al., 2004). In the present study, we demonstrated the ability of a group of Bacillus strains closely related to strain FZB42(T) to colonize Arabidopsis roots. On the basis of their phenotypic traits, the strains were similar to Bacillus amyloliquefaciens DSM 7(T) but differed considerably from this type strain in the DNA sequences of genes encoding 16S rRNA, gyrase subunit A (gyrA) and histidine kinase (cheA). Phylogenetic analysis performed with partial 16S rRNA, gyrA and cheA gene sequences revealed that the plant-associated strains of the genus Bacillus, including strain FZB42(T), formed a lineage, which could be distinguished from the cluster of strains closely related to B. amyloliquefaciens DSM 7(T). DNA-DNA hybridizations (DDH) performed with genomic DNA from strains DSM 7(T) and FZB42(T) yielded relatedness values of 63.7-71.2 %. Several methods of genomic analysis, such as direct whole-genome comparison, digital DDH and microarray-based comparative genomichybridization (M-CGH) were used as complementary tests. The group of plant-associated strains could be distinguished from strain DSM 7(T) and the type strain of B. subtilis by differences in the potential to synthesize non-ribosomal lipopeptides and polyketides. Based on the differences found in the marker gene sequences and the whole genomes of these strains, we propose two novel subspecies, designated B. amyloliquefaciens subsp. plantarum subsp. nov., with the type strain FZB42(T) ( = DSM 23117(T) = BGSC 10A6(T)), and B. amyloliquefaciens subsp. amyloliquefaciens subsp. nov., with the type strain DSM 7(T)( = ATCC 23350(T) = Fukumoto Strain F(T)), for plant-associated and non-plant-associated representatives, respecitvely. This is in agreement with results of DDH and M-CGH tests and the MALDI-TOF MS of cellular components, all of which suggested that the ecovars represent two different subspecies.

Collaboration


Dive into the Anke Becker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Ros

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge