Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew McIntosh is active.

Publication


Featured researches published by Matthew McIntosh.


Molecular Plant-microbe Interactions | 2008

Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility.

Christelle Bahlawane; Matthew McIntosh; Elizaveta Krol; Anke Becker

In order to enter symbiosis with its legume partner, Sinorhizobium meliloti requires regulatory systems for the appropriate responses to its environment. For example, motility is required for the chemotactic movement of bacteria toward the compounds released by its host, and exopolysaccharides (EPS) are required for bacterial attachment to the root or for invasion of the infection thread. Previous research has shown that ExoR/ExoS/ChvI as well as the ExpR/Sin quorum-sensing system inversely regulate both motility and EPS production, although the regulation mechanisms were unknown. We were able to attribute the ExpR-mediated regulation of motility to the ability of ExpR to bind a DNA sequence upstream of visN when activated by N-acyl-homoserine lactone. Furthermore, MucR, previously characterized as a regulator of EPS production, also affected motility. MucR inhibited expression of rem encoding an activator of motility gene expression and, consequently, the expression of Rem-regulated genes such as flaF and flgG. Binding of MucR to the rem promoter region was demonstrated and a sequence motif similar to the previously identified MucR binding consensus was identified within this region. The swarming ability of S. meliloti Rm2011 was shown to depend on a functional ExpR/Sin quorum-sensing system and the production of both flagella and EPS. Finally, we propose a model for the coordination of motility and EPS synthesis in S. meliloti.


Journal of Bacteriology | 2008

Competitive and Cooperative Effects in Quorum-Sensing-Regulated Galactoglucan Biosynthesis in Sinorhizobium meliloti

Matthew McIntosh; Elizaveta Krol; Anke Becker

The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti possesses the Sin quorum-sensing system based on N-acyl homoserine lactones (AHLs) as signal molecules. The Sin system consists of SinI, the AHL synthase, and SinR, the LuxR-type regulator. This system regulates the expression of a multitude of S. meliloti genes through ExpR, another LuxR-type regulator. Analysis of the activity of the sinI promoter showed that the expression of sinI is dependent on sinR and enhanced by a combination of expR and Sin AHLs. The characterization of the ExpR binding site upstream of sinI and the identification of binding sites upstream of the galactoglucan biosynthesis genes wgaA (expA1) and wgeA (expE1) allowed the definition of a consensus sequence for these binding sites. Based on this consensus, two additional ExpR binding sites in the promoter regions of exoI and exsH, two genes related to the production of succinoglycan, were found. The specific binding of ExpR to the wgaA and wgeA promoters was enhanced in the presence of oxo-C(14)-HL. Positive regulation of the galactoglucan biosynthesis genes by ExpR was shown to be dependent on WggR (ExpG) and influenced by MucR, both of which are previously characterized regulators of these genes. Based on these results, a reworked model of the Sin-ExpR quorum-sensing regulation scheme of galactoglucan production in S. meliloti is suggested.


Molecular Microbiology | 2009

Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability.

Matthew McIntosh; Stefan Meyer; Anke Becker

The Sin quorum sensing system of Sinorhizobium meliloti depends upon at least three genes, sinR, sinI and expR, and N‐acyl homoserine lactones (AHLs) as signals to regulate multiple processes in its free‐living state in the rhizosphere and in the development towards symbiosis with its plant host. In this study, we have characterized novel mechanisms of transcription control through which the system regulates itself. At low AHL levels a positive feedback loop activates expression of sinI (AHL synthase), resulting in amplification of AHL levels. At high AHL levels, expression of sinI is reduced by a negative feedback loop. These feedback mechanisms are mediated by the LuxR‐type regulators ExpR and SinR. Expression of sinR and expR is regulated by ExpR in the presence of AHLs. A novel ExpR binding site in the promoter of sinR is responsible for the reduction of expression of this gene. In addition, expression of sinR, upon which sinI expression is dependent, is induced by phoB during growth under phosphate‐limiting conditions. This indicates that this response ensures quorum sensing in phosphate‐restricted growth.


Journal of Bacteriology | 2013

Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti

Pornsri Charoenpanich; Stefan Meyer; Anke Becker; Matthew McIntosh

The Sin quorum sensing (QS) system of S. meliloti activates exopolysaccharide and represses flagellum production. The system consists of an N-acyl-homoserine lactone (AHL) synthase, SinI, and at least two LuxR-type regulators, SinR and ExpR. SinR appears to be independent of AHLs for its control of sinI expression, while ExpR is almost completely dependent upon AHLs. In this study, we confirmed 7 previously detected ExpR-DNA binding sites and used the consensus sequence to identify another 26 sites, some of which regulate genes previously not known to be members of the ExpR/AHL regulon. The activities of promoters dependent upon ExpR/AHL were titrated against AHL levels, with varied outcomes in AHL sensitivity. The data suggest a type of temporal expression program whereby the activity of each promoter is subject to a specific range of AHL concentrations. For example, genes responsible for exopolysaccharide production are activated at lower concentrations of AHLs than those required for the repression of genes controlling flagellum production. Several features of ExpR-regulated promoters appear to determine their response to AHLs. The location of the ExpR-binding site with respect to the relevant transcription start within each promoter region determines whether ExpR/AHL activates or represses promoter activity. Furthermore, the strength of the response is dependent upon the concentration of AHLs. We propose that this differential sensitivity to AHLs provides a bacterial colony with a transcription control program that is dynamic and precise.


Molecular Plant-microbe Interactions | 2015

The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean

José-María Vinardell; Sebastián Acosta-Jurado; Susanne Zehner; Michael Göttfert; Anke Becker; Irene Baena; Jochem Blom; Juan C. Crespo-Rivas; Alexander Goesmann; Sebastian Jaenicke; Elizaveta Krol; Matthew McIntosh; Isabel Margaret; Francisco Pérez-Montaño; Susanne Schneiker-Bekel; Javier Serrania; Rafael Szczepanowski; Ana-María Buendía; Javier Lloret; Ildefonso Bonilla; Alfred Pühler; José-Enrique Ruiz-Sainz; Stefan Weidner

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.


Small | 2009

Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes

Katrin Wollschläger; Katharina Gaus; André Körnig; Rainer Eckel; Sven David Wilking; Matthew McIntosh; Zsuzsanna Majer; Anke Becker; Robert Ros; Dario Anselmetti; Norbert Sewald

Interactions between proteins and DNA are essential for the regulation of cellular processes in all living organisms. In this context, it is of special interest to investigate the sequence-specific molecular recognition between transcription factors and their cognate DNA sequences. As a model system, peptide and protein epitopes of the DNA-binding domain (DBD) of the transcription factor PhoB from Escherichia coli are analyzed with respect to DNA binding at the single-molecule level. Peptides representing the amphiphilic recognition helix of the PhoB DBD (amino acids 190-209) are chemically synthesized and C-terminally modified with a linker for atomic force microscopy-dynamic force spectroscopy experiments (AFM-DFS). For comparison, the entire PhoB DBD is overexpressed in E. coli and purified using an intein-mediated protein purification method. To facilitate immobilization for AFM-DFS experiments, an additional cysteine residue is ligated to the protein. Quantitative AFM-DFS analysis proves the specificity of the interaction and yields force-related properties and kinetic data, such as thermal dissociation rate constants. An alanine scan for strategic residues in both peptide and protein sequences is performed to reveal the contributions of single amino acid residues to the molecular-recognition process. Additionally, DNA binding is substantiated by electrophoretic mobility-shift experiments. Structural differences of the peptides, proteins, and DNA upon complex formation are analyzed by circular dichroism spectroscopy. This combination of techniques eventually provides a concise picture of the contribution of epitopes or single amino acids in PhoB to DNA binding.


Journal of Biotechnology | 2015

Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level

Jan-Philip Schlüter; Peter Czuppon; Oliver Schauer; Peter Pfaffelhuber; Matthew McIntosh; Anke Becker

Phenotypic heterogeneity, defined as the unequal behavior of individuals in an isogenic population, is prevalent in microorganisms. It has a significant impact both on industrial bioprocesses and microbial ecology. We introduce a new versatile reporter system designed for simultaneous monitoring of the activities of three different promoters, where each promoter is fused to a dedicated fluorescent reporter gene (cerulean, mCherry, and mVenus). The compact 3.1 kb triple reporter cassette can either be carried on a replicating plasmid or integrated into the genome avoiding artifacts associated with variation in copy number of plasmid-borne reporter constructs. This construct was applied to monitor promoter activities related to quorum sensing (sinI promoter) and biosynthesis of the exopolysaccharide galactoglucan (wgeA promoter) at single cell level in colonies of the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti growing in a microfluidics system. The T5-promoter served as a constitutive and homogeneously active control promoter indicating cell viability. wgeA promoter activity was heterogeneous over the whole period of colony development, whereas sinI promoter activity passed through a phase of heterogeneity before becoming homogeneous at late stages. Although quorum sensing-dependent regulation is a major factor activating galactoglucan production, activities of both promoters did not correlate at single cell level. We developed a novel mathematical strategy for classification of the gene expression status in cell populations based on the increase in fluorescence over time in each individual. With respect to galactoglucan biosynthesis, cells in the population were classified into non-contributors, weak contributors, and strong contributors.


Environmental Microbiology Reports | 2015

Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti

Pornsri Charoenpanich; María José Soto; Anke Becker; Matthew McIntosh

Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions.


Microbiology | 2017

RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti

Kathrin Baumgardt; Hendrik Melior; Ramakanth Madhugiri; Sebastian Thalmann; Adam Schikora; Matthew McIntosh; Anke Becker; Elena Evguenieva-Hackenberg

The ribonucleases (RNases) E and J play major roles in E. coli and Bacillus subtilis, respectively, and co-exist in Sinorhizobium meliloti. We analysed S. meliloti 2011 mutants with mini-Tn5 insertions in the corresponding genes rne and rnj and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes flaA, flgB and cheR and higher levels of ndvA (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the sinI AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the N6-methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in S. meliloti.


Research in Microbiology | 2017

Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119

Liliana Mercedes Ludueña; María Soledad Anzuay; Cynthia Magallanes-Noguera; María Laura Tonelli; Fernando Ibáñez; Jorge Angelini; Adriana Fabra; Matthew McIntosh; Tania Taurian

The mineral phosphate-solubilizing phenotype in bacteria is attributed predominantly to secretion of gluconic acid produced by oxidation of glucose by the glucose dehydrogenase enzyme and its cofactor, pyrroloquinoline quinone. This study analyzes pqqE gene expression and pqq promoter activity in the native phosphate-solubilizing bacterium Serratia sp S119 growing under P-limitation, and in the presence of root exudates obtained from peanut plants, also growing under P-limitation. Results indicated that Serratia sp. S119 contains a pqq operon composed of six genes (pqqA,B,C,D,E,F) and two promoters, one upstream of pqqA and other between pqqA and pqqB. PqqE gene expression and pqq promoter activity increased under P-limiting growth conditions and not under N-deficient conditions. In the plant-bacteria interaction assay, the activity of the bacterial pqq promoter region varied depending on the concentration and type of root exudates and on the bacterial growth phase. Root exudates from peanut plants growing under P-available and P-limiting conditions showed differences in their composition. It is concluded from this study that the response of Serratia sp. S119 to phosphorus limitation involves an increase in expression of pqq genes, and that molecules exuded by peanut roots modify expression of these phosphate-solubilizing bacterial genes during plant-bacteria interactions.

Collaboration


Dive into the Matthew McIntosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Ros

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Fabra

National University of Río Cuarto

View shared research outputs
Researchain Logo
Decentralizing Knowledge