Anke Dahlmann
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anke Dahlmann.
Nature Medicine | 2009
Agnes Machnik; Wolfgang Neuhofer; Jonathan Jantsch; Anke Dahlmann; Tuomas Tammela; Katharina Machura; Joon-Keun Park; Franz-Xaver Beck; Dominik N. Müller; Wolfgang Derer; Jennifer Goss; Agata Ziomber; Peter Dietsch; Hubertus Wagner; Nico van Rooijen; Armin Kurtz; Karl F. Hilgers; Kari Alitalo; Kai-Uwe Eckardt; Friedrich C. Luft; Dontscho Kerjaschki; Jens Titze
In salt-sensitive hypertension, the accumulation of Na+ in tissue has been presumed to be accompanied by a commensurate retention of water to maintain the isotonicity of body fluids. We show here that a high-salt diet (HSD) in rats leads to interstitial hypertonic Na+ accumulation in skin, resulting in increased density and hyperplasia of the lymphcapillary network. The mechanisms underlying these effects on lymphatics involve activation of tonicity-responsive enhancer binding protein (TonEBP) in mononuclear phagocyte system (MPS) cells infiltrating the interstitium of the skin. TonEBP binds the promoter of the gene encoding vascular endothelial growth factor-C (VEGF-C, encoded by Vegfc) and causes VEGF-C secretion by macrophages. MPS cell depletion or VEGF-C trapping by soluble VEGF receptor-3 blocks VEGF-C signaling, augments interstitial hypertonic volume retention, decreases endothelial nitric oxide synthase expression and elevates blood pressure in response to HSD. Our data show that TonEBP–VEGF-C signaling in MPS cells is a major determinant of extracellular volume and blood pressure homeostasis and identify VEGFC as an osmosensitive, hypertonicity-driven gene intimately involved in salt-induced hypertension.
Journal of Clinical Investigation | 2013
Helge Wiig; Agnes Schröder; Wolfgang Neuhofer; Jonathan Jantsch; Christoph W. Kopp; Tine V. Karlsen; Michael Boschmann; Jennifer Goss; Maija Bry; Natalia Rakova; Anke Dahlmann; Sven Brenner; Olav Tenstad; Harri Nurmi; Eero Mervaala; Hubertus Wagner; Franz-Xaver Beck; Dominik Müller; Dontscho Kerjaschki; Friedrich C. Luft; David G. Harrison; Kari Alitalo; Jens Titze
The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.
Hypertension | 2013
Christoph W. Kopp; Peter Linz; Anke Dahlmann; Matthias Hammon; Jonathan Jantsch; Dominik Müller; Roland E. Schmieder; Alexander Cavallaro; Kai-Uwe Eckardt; Michael Uder; Friedrich C. Luft; Jens Titze
High dietary salt intake is associated with hypertension; the prevalence of salt-sensitive hypertension increases with age. We hypothesized that tissue Na+ might accumulate in hypertensive patients and that aging might be accompanied by Na+ deposition in tissue. We implemented 23Na magnetic resonance imaging to measure Na+ content of soft tissues in vivo earlier, but had not studied essential hypertension. We report on a cohort of 56 healthy control men and women, and 57 men and women with essential hypertension. The ages ranged from 22 to 90 years. 23Na magnetic resonance imaging measurements were made at the level of the calf. We observed age-dependent increases in Na+ content in muscle in men, whereas muscle Na+ content did not change with age in women. We estimated water content with conventional MRI and found no age-related increases in muscle water in men, despite remarkable Na+ accumulation, indicating water-free Na+ storage in muscle. With increasing age, there was Na+ deposition in the skin in both women and men; however, skin Na+ content remained lower in women. Similarly, this sex difference was found in skin water content, which was lower in women than in men. In contrast to muscle, increasing Na+ content was paralleled with increasing skin water content. When controlled for age, we found that patients with refractory hypertension had increased tissue Na+ content, compared with normotensive controls. These observations suggest that 23Na magnetic resonance imaging could have utility in assessing the role of tissue Na+ storage for cardiovascular morbidity and mortality in longitudinal studies.
Hypertension | 2010
Agnes Machnik; Anke Dahlmann; Christoph W. Kopp; Jennifer Goss; Hubertus Wagner; N. van Rooijen; Kai-Uwe Eckardt; Dominik N. Müller; Joon-Keun Park; Friedrich C. Luft; Dontscho Kerjaschki; Jens Titze
We showed recently that mononuclear phagocyte system (MPS) cells provide a buffering mechanism for salt-sensitive hypertension by driving interstitial lymphangiogenesis, modulating interstitial Na+ clearance, and increasing endothelial NO synthase protein expression in response to very high dietary salt via a tonicity-responsive enhancer binding protein/vascular endothelial growth factor C regulatory mechanism. We now tested whether isotonic saline and deoxycorticosterone acetate (DOCA)-salt treatment leads to a similar regulatory response in Sprague-Dawley rats. Male rats were fed a low-salt diet and received tap water (low-salt diet LSD), 1.0% saline (high-salt diet HSD), or DOCA+1.0% saline (DOCA-HSD). To test the regulatory role of interstitial MPS cells, we further depleted MPS cells with clodronate liposomes. HSD and DOCA-HSD led to Na+ accumulation in the skin, MPS-driven tonicity-responsive enhancer binding protein/vascular endothelial growth factor C–mediated hyperplasia of interstitial lymph capillaries, and increased endothelial NO synthase protein expression in skin interstitium. Clodronate liposome MPS cell depletion blocked MPS infiltration in the skin interstitium, resulting in unchanged tonicity-responsive enhance binding protein/vascular endothelial growth factor C levels and absent hyperplasia of the lymph capillary network. Moreover, no increased skin endothelial NO synthase protein expression occurred in either clodronate liposome–treated HSD or DOCA-salt rats. Thus, absence of the MPS-cell regulatory response converted a salt-resistant blood-pressure state to a salt-sensitive state in HSD rats. Furthermore, salt-sensitive hypertension in DOCA-salt rats was aggravated. We conclude that MPS cells act as onsite controllers of interstitial volume and blood pressure homeostasis, providing a local regulatory salt-sensitive tonicity-responsive enhancer binding protein/vascular endothelial growth factor C–mediated mechanism in the skin to maintain normal blood pressure in states of interstitial Na+ and Cl− accumulation. Failure of this physiological extrarenal regulatory mechanism leads to a salt-sensitive blood pressure response.
Hypertension | 2012
Christoph W. Kopp; Peter Linz; Lydia Wachsmuth; Anke Dahlmann; Thomas Horbach; Christof Schöfl; Wolfgang Renz; Davide Santoro; Thoralf Niendorf; Dominik Müller; Myriam Neininger; Alexander Cavallaro; Kai-Uwe Eckardt; Roland E. Schmieder; Friedrich C. Luft; Michael Uder; Jens Titze
Hypertension is linked to disturbed total-body sodium (Na+) regulation; however, measuring Na+ disposition in the body is difficult. We implemented 23Na magnetic resonance spectroscopy (23Na-MR) and imaging technique (23Na-MRI) at 9.4T for animals and 3T for humans to quantify Na+ content in skeletal muscle and skin. We compared 23Na-MRI data with actual tissue Na+ content measured by chemical analysis in animal and human tissue. We then quantified tissue Na+ content in normal humans and in patients with primary aldosteronism. We found a 29% increase in muscle Na+ content in patients with aldosteronism compared with normal women and men. This tissue Na+ was mobilized after successful treatment without accompanying weight loss. We suggest that, after further refinements, this tool could facilitate understanding the relationships between Na+ accumulation and hypertension. Furthermore, with additional technical advances, a future clinical use may be possible.
Kidney International | 2015
Anke Dahlmann; Kathrin Dörfelt; Florian Eicher; Peter Linz; Christoph W. Kopp; Irina Mössinger; Stephan Horn; Beatrix Büschges-Seraphin; Peter Wabel; Matthias Hammon; Alexander Cavallaro; Kai-Uwe Eckardt; Peter Kotanko; Nathan W. Levin; Bernd Johannes; Michael Uder; Friedrich C. Luft; Dominik N. Müller; Jens Titze
We have previously reported sodium is stored in skin and muscle. The amounts stored in hemodialysis (HD) patients are unknown. We determined whether 23Na magnetic resonance imaging (sodium-MRI) allows assessment of tissue sodium and its removal in 24 HD patients, and 27 age-matched healthy controls. We also studied 20 HD patients before and shortly after HD with a batch dialysis system with direct measurement of sodium in dialysate and ultrafiltrate. Age was associated with higher tissue sodium content in controls. This increase was paralleled by an age-dependent decrease of circulating levels of vascular endothelial growth factor-C (VEGF-C). Older (over 60 years) HD patients showed increased sodium and water in skin and muscle, and lower VEGF-C levels than age-matched controls. After HD, patients with low VEGF-C levels had significantly higher skin sodium content than patients with high VEGF-C levels (low VEGF-C: 2.3 ng/ml and skin sodium: 24.3 mmol/L; high VEGF-C: 4.1ng/ml and skin sodium: 18.2mmol/L). Thus, sodium-MRI quantitatively detects sodium stored in skin and muscle in humans and allows studying sodium storage reduction in ESRD patients. Age and VEGF-C-related local tissue-specific clearance mechanisms may determine the efficacy of tissue sodium removal with HD. Prospective trials on the relationship between tissue sodium content and hard endpoints could provide new insights into sodium homeostasis, and clarify whether increased sodium storage is a cardiovascular risk factor.
Hypertension | 2015
Kathrin Lerchl; Natalia Rakova; Anke Dahlmann; Manfred Rauh; Ulrike Goller; Mathias Basner; David F. Dinges; Luis Beck; Alexander Agureev; Irina M. Larina; Victor Baranov; B. V. Morukov; Kai-Uwe Eckardt; Galina Vassilieva; Peter Wabel; Jörg Vienken; Karl Kirsch; Bernd Johannes; Alexander Krannich; Friedrich C. Luft; Jens Titze
Accurately collected 24-hour urine collections are presumed to be valid for estimating salt intake in individuals. We performed 2 independent ultralong-term salt balance studies lasting 105 (4 men) and 205 (6 men) days in 10 men simulating a flight to Mars. We controlled dietary intake of all constituents for months at salt intakes of 12, 9, and 6 g/d and collected all urine. The subjects’ daily menus consisted of 27 279 individual servings, of which 83.0% were completely consumed, 16.5% completely rejected, and 0.5% incompletely consumed. Urinary recovery of dietary salt was 92% of recorded intake, indicating long-term steady-state sodium balance in both studies. Even at fixed salt intake, 24-hour urine collection for sodium excretion (UNaV) showed infradian rhythmicity. We defined a ±25 mmol deviation from the average difference between recorded sodium intake and UNaV as the prediction interval to accurately classify a 3-g difference in salt intake. Because of the biological variability in UNaV, only every other daily urine sample correctly classified a 3-g difference in salt intake (49%). By increasing the observations to 3 consecutive 24-hour collections and sodium intakes, classification accuracy improved to 75%. Collecting seven 24-hour urines and sodium intake samples improved classification accuracy to 92%. We conclude that single 24-hour urine collections at intakes ranging from 6 to 12 g salt per day were not suitable to detect a 3-g difference in individual salt intake. Repeated measurements of 24-hour UNaV improve precision. This knowledge could be relevant to patient care and the conduct of intervention trials.
Kidney International | 2014
Jens Titze; Anke Dahlmann; Kathrin Lerchl; Christoph W. Kopp; Natalia Rakova; Agnes Schröder; Friedrich C. Luft
Current teaching states that when sodium intake is increased from low to high levels, total-body sodium (TBNa) and water increase until daily sodium excretion again equals intake. When sodium intake is reduced, sodium excretion briefly exceeds intake until the excess TBNa and water are eliminated, at which point sodium excretion again equals intake. However, careful balance studies oftentimes conflict with this view and long-term studies suggest that TBNa fluctuates independent of intake or body weight. We recently performed the opposite experiment in that we fixed sodium intake for several weeks at three levels of sodium intake and collected all urine made. We found weekly (circaseptan) patterns in sodium excretion that were inversely related to aldosterone and directly to cortisol. TBNa was not dependent on sodium intake but instead exhibited far longer (≥ monthly) infradian rhythms independent of extracellular water, body weight, or blood pressure. The findings are consistent with our ideas on tissue sodium storage and its regulation that we developed on the basis of animal research. We are implementing (23)Na-magnetic resonance imaging (MRI) to pursue open questions on sodium balance in patients. Our findings could be relevant to therapeutic strategies for hypertension and target-organ damage.
American Journal of Physiology-renal Physiology | 2012
Viatcheslav Nesterov; Anke Dahlmann; Bettina Krueger; Marko Bertog; Johannes Loffing; Christoph Korbmacher
Aldosterone is thought to be the main hormone to stimulate the epithelial sodium channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), the connecting tubule (CNT) and the entire collecting duct (CD). There is immunohistochemical evidence for an axial gradient of ENaC expression along the ASDN with highest expression in the DCT2 and CNT. However, most of our knowledge about renal ENaC function stems from studies in the cortical collecting duct (CCD). Here we investigated ENaC function in the transition zone of DCT2/CNT or CNT/CCD microdissected from mice maintained on different sodium diets to vary plasma aldosterone levels. Single-channel recordings demonstrated amiloride-sensitive Na(+) channels in DCT2/CNT with biophysical properties typical for ENaC previously described in CNT/CCD. In animals maintained on a standard salt diet, the average ENaC-mediated whole cell current (ΔI(ami)) was higher in DCT2/CNT than in CNT/CCD. A low salt diet increased ΔI(ami) in CNT/CCD but had little effect on ΔI(ami) in DCT2/CNT. To investigate whether aldosterone is necessary for ENaC activity in the DCT2/CNT, we used aldosterone synthase knockout (AS(-/-)) mice that lack aldosterone. In CNT/CCD of AS(-/-) mice, ΔI(ami) was lower than that in wild-type (WT) animals and was not stimulated by a low salt diet. In contrast, in DCT2/CNT of AS(-/-) mice, ΔI(ami) was similar to that in DCT2/CNT of WT animals both on a standard and on a low salt diet. We conclude that ENaC function in the DCT2/CNT is largely independent of aldosterone which is in contrast to its known aldosterone sensitivity in CNT/CCD.
American Journal of Physiology-renal Physiology | 2008
Agata Ziomber; Agnes Machnik; Anke Dahlmann; Peter Dietsch; Franz-Xaver Beck; Hubertus Wagner; Karl F. Hilgers; Friedrich C. Luft; Kai-Uwe Eckardt; Jens Titze
Na(+) loading without Cl(-) fails to increase blood pressure in the DOCA model. We compared the changes in the total body (TB) effective Na(+), K(+), Cl(-), and water (TBW) content as well as in intracellular (ICV) or extracellular (ECV) volume in rats receiving DOCA-NaCl, DOCA-NaHCO(3), or DOCA-KHCO(3). We divided 42 male rats into 5 groups. Group 1 was untreated, group 2 received 1% NaCl, and groups 3, 4, and 5 were treated with DOCA and received 1% NaCl, 1.44% NaHCO(3), or 1.7% KHCO(3) to drink. We measured mean arterial blood pressure (MAP) directly after 3 wk. Tissue electrolyte and water content was measured by chemical analysis. Compared with control rats, DOCA-NaCl increased MAP while DOCA-NaHCO(3) and DOCA-KHCO(3) did not. DOCA-NaCl increased TBNa(+) 26% but only moderately increased TBW. DOCA-NaHCO(3) led to similar TBNa(+) excess, while TBW and ICV, but not ECV, were increased more than in DOCA-NaCl rats. DOCA-KHCO(3) did not affect TBNa(+) or volume. At a given TB(Na(+)+K(+)) and TBW, MAP in DOCA-NaCl rats was higher than in control, DOCA-NaHCO(3), and DOCA-KHCO(3) rats, indicating that hypertension in DOCA-NaCl rats was not dependent on TB(Na(+)+K(+)) and water mass balance. Skin volume retention was hypertonic compared with serum and paralleled hypertension in DOCA-NaCl rats. These rats had higher TB(Na(+)+K(+))-to-TBW ratio in accumulated fluid than DOCA-NaHCO(3) rats. DOCA-NaCl rats also had increased intracellular Cl(-) concentrations in skeletal muscle. We conclude that excessive cellular electrolyte redistribution and/or intracellular Na(+) or Cl(-) accumulation may play an important role in the pathogenesis of salt-sensitive hypertension.