Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Dienelt is active.

Publication


Featured researches published by Anke Dienelt.


Bone | 2018

Macrophages in bone fracture healing: Their essential role in endochondral ossification

Claudia Schlundt; Thaqif El Khassawna; Alessandro Serra; Anke Dienelt; Sebastian Wendler; Hanna Schell; Nico van Rooijen; Andreas Radbruch; Richard Lucius; Susanne Hartmann; Georg N. Duda; Katharina Schmidt-Bleek

In fracture healing, skeletal and immune system are closely interacting through common cell precursors and molecular mediators. It is thought that the initial inflammatory reaction, which involves migration of macrophages into the fracture area, has a major impact on the long term outcome of bone repair. Interestingly, macrophages reside during all stages of fracture healing. Thus, we hypothesized a critical role for macrophages in the subsequent phases of bone regeneration. This study examined the impact of in vivo induced macrophage reduction, using clodronate liposomes, on the different healing phases of bone repair in a murine model of a standard closed femoral fracture. A reduction in macrophages had no obvious effect on the early fracture healing phase, but resulted in a delayed hard callus formation, thus severely altering endochondral ossification. Clodronate treated animals clearly showed delayed bony consolidation of cartilage and enhanced periosteal bone formation. Therefore, we decided to backtrack macrophage distribution during fracture healing in non-treated mice, focusing on the identification of the M1 and M2 subsets. We observed that M2 macrophages were clearly prevalent during the ossification phase. Therefore enhancement of M2 phenotype in macrophages was investigated as a way to further bone healing. Induction of M2 macrophages through interleukin 4 and 13 significantly enhanced bone formation during the 3week investigation period. These cumulative data illustrate their so far unreported highly important role in endochondral ossification and the necessity of a fine balance in M1/M2 macrophage function, which appears mandatory to fracture healing and successful regeneration.


Stem Cells and Development | 2011

Hyperglycemia Impairs Skeletogenesis from Embryonic Stem Cells by Affecting Osteoblast and Osteoclast Differentiation

Anke Dienelt; Nicole I. zur Nieden

High maternal blood glucose levels caused by diabetes mellitus can irreversibly lead to maldevelopment of the growing fetus with specific effects on the skeleton. To date, it remains controversial at which stage embryonic development is affected. Specifically during embryonic bone development, it is unclear whether diminished bone mineral density is caused by reduced osteoblast or rather enhanced osteoclast function. Therefore, the aim of this study was to characterize the growth as well as the skeletal differentiation capability of pluripotent embryonic stem cells (ESCs), which may serve as an in vitro model for all stages of embryonic development, when cultured in diabetic levels of D-glucose (4.5 g/L) versus physiological levels (1.0 g/L). Results showed that cells cultivated in physiological glucose gave rise to a higher number of colonies with an undifferentiated character as compared to cells grown in diabetic glucose concentrations. In contrast, these cultures were characterized by slightly decreased expression of proteins associated with the stem cell state. Furthermore, differentiation of ESCs into osteoblasts and osteoclasts was favored in physiological glucose concentrations, demonstrated by an increased matrix calcification, enhanced expression of cell-type-specific mRNAs, as well as activity of the cell-type-specific enzymes, alkaline, and tartrate resistant acidic phosphatase. In fact, this pattern was noted in murine as well as in primate ESCs. Our study suggests that an interplay between both the osteoblast and the osteoclast lineage is needed for proper skeletal development to occur, which seems impaired in hyperglycemic conditions.


Expert Opinion on Biological Therapy | 2014

Initiation and early control of tissue regeneration – bone healing as a model system for tissue regeneration

Katharina Schmidt-Bleek; Ansgar Petersen; Anke Dienelt; Carolin Schwarz; Georg N. Duda

Introduction: Tissue regeneration in itself is a fascinating process that promises repeated renewal of tissue and organs. Areas covered: This article aims to illustrate the different strategies available to control tissue regeneration at a very early stage, using bone as an exemplary tissue. The aspects of a controlled inflammatory cascade to achieve a balanced immune response, cell therapeutic approaches for improved tissue formation and angiogenesis, guiding the organization of newly formed extracellular matrix by biomaterials, the relevance of mechanical signals for tissue regeneration processes, and the chances and limitations of growth factor treatments are discussed. Expert opinion: The currently available knowledge is reviewed and perspectives for potential new targets are given. This is done under the assumption that early identification of risk patients as well as the application of early intervention strategies is possible.


Frontiers in Pharmacology | 2015

Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners.

Hong Lei; Katharina Schmidt-Bleek; Anke Dienelt; Petra Reinke; Hans-Dieter Volk

Regulatory T cells (Tregs) offer new immunotherapeutic options to control undesired immune reactions, such as those in transplant rejection and autoimmunity. In addition, tissue repair and regeneration depend on a multitude of tightly regulated immune and non-immune cells and signaling molecules. There is mounting evidence that adequate innate responses, and even more importantly balanced adaptive immune responses, are key players in the tissue repair and regeneration processes, even in absence of any immune-related disease or infection. Thus, the anti-inflammatory and anti-apoptotic capacities of Treg can affect not only the effector immune response, creating the appropriate immune environment for successful tissue repair and regeneration, but growing evidence shows that they also have direct effects on tissue cell functions. Here we summarize the present views on how Treg might support tissue regeneration by direct control of undesired immune reactivity and also by direct interaction with non-immune tissue cells. We describe tissue-resident Treg and their specific phenotypes in skin, visceral adipose tissue, and skeletal muscle. In addition, we touch on the topic of osteoimmunology, discussing the direct interactions of Treg with bone-forming cells, such as osteoblasts and their mesenchymal stromal cell (MSC) progenitors—a field which is under-investigated. We hypothesize a cross-talk between Treg and bone-forming cells through the CD39–CD73-(adenosine)-adenosine receptor pathway, which might also potentiate the differentiation of MSCs, thus facilitating bone regeneration. This hypothesis may provide a road map for further investigations on the cross-talk between the immune and the skeletal system, and also enable the development of better strategies to promote bone repair and regeneration.


Cell Death and Disease | 2013

In serum veritas-in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway.

Sven Geißler; Martin Textor; Katharina Schmidt-Bleek; Oliver Klein; M Thiele; Agnes Ellinghaus; D Jacobi; Andrea Ode; Carsten Perka; Anke Dienelt; Joachim Klose; Grit Kasper; Georg N. Duda; Patrick Strube

Even tissues capable of complete regeneration, such as bone, show an age-related reduction in their healing capacity. Here, we hypothesized that this decline is primarily due to cell non-autonomous (extrinsic) aging mediated by the systemic environment. We demonstrate that culture of mesenchymal stromal cells (MSCs) in serum from aged Sprague–Dawley rats negatively affects their survival and differentiation ability. Proteome analysis and further cellular investigations strongly suggest that serum from aged animals not only changes expression of proteins related to mitochondria, unfolded protein binding or involved in stress responses, it also significantly enhances intracellular reactive oxygen species production and leads to the accumulation of oxidatively damaged proteins. Conversely, reduction of oxidative stress levels in vitro markedly improved MSC function. These results were validated in an in vivo model of compromised bone healing, which demonstrated significant increase regeneration in aged animals following oral antioxidant administration. These observations indicate the high impact of extrinsic aging on cellular functions and the process of endogenous (bone) regeneration. Thus, addressing the cell environment by, for example, systemic antioxidant treatment is a promising approach to enhance tissue regeneration and to regain cellular function especially in elderly patients.


Methods of Molecular Biology | 2011

Absorption-Based Assays for the Analysis of Osteogenic and Chondrogenic Yield

Lesley A. Davis; Anke Dienelt; Nicole I. zur Nieden

The typical characteristics of cartilage and bone tissue are their unique extracellular matrices on which our body relies for structural support. In the respective tissue, the cells that create these matrices are the chondrocyte and the osteoblast. During in vitro differentiation from an embryonic or any other stem cell, specific cell types must be unequivocally identifiable to be able to draw the conclusion that a specific cell type has indeed been generated. Here, gene expression profiling can be helpful, but examining functional properties of cells is a lot more conclusive. As proteoglycans are found in and are part of the function of cartilage tissue, their detection and quantification becomes an important diagnostic tool in tissue engineering. Likewise, in bone regeneration therapy and in research, alkaline phosphatase is a known marker to detect the degree of development and function of differentiating osteoblasts. Calcification of the maturing osteoblast is the last stage in its development, and thus, the quantification of deposited calcium can aid in determining how many cells in a given culture have successfully matured into fully functioning osteoblasts. This chapter describes methods ideal for testing of proteoglycan content, alkaline phosphatase activity, and calcium deposit during in vitro chondro- and osteogenesis.


Journal of Tissue Engineering and Regenerative Medicine | 2016

Qualifying stem cell sources: how to overcome potential pitfalls in regenerative medicine?

Simon Reinke; Anke Dienelt; Antje Blankenstein; Georg N. Duda; Sven Geissler

Regenerative medicine aims to replace lost cells and to restore damaged tissues and organs by either tissue‐engineering approaches or stimulation of endogenous processes. Due to their biological properties, stem cells promise to be an effective source for such strategies. Especially adult multipotent stem cells (ASCs) are believed to be applicable in a broad range of therapies for the treatment of multifactorial diseases or age‐related degeneration, although the molecular and cellular mechanisms underlying their regenerative function are often hardly described. Moreover, in some demanding clinical situations their efficiency remains limited. Thus, a basic understanding of ASCs regenerative function, their complex interplay with their microenvironment and how compromising conditions interfere with their efficiency is mandatory for any regenerative strategy. Concerning this matter, the impact of patient‐specific constraints are often underestimated in research projects and their influence on the study results disregarded. Thus, researchers are urgently depending on well‐characterized tissue samples or cells that are connected with corresponding donor information, such as secondary diseases, medication. Here, we outline principle pitfalls during experimental studies using human samples, and describe a potential strategy to overcome these challenges by establishing a core unit for cell and tissue harvesting. This facility aims to bridge the gap between clinic and research laboratories by the provision of a direct link to the clinical operating theatres. Such a strategy clearly supports basic and clinical research in the conduct of their studies and supplies highly characterized human samples together with the corresponding donor information. Copyright


PLOS ONE | 2013

CD133: Enhancement of Bone Healing by Local Transplantation of Peripheral Blood Cells in a Biologically Delayed Rat Osteotomy Model

Bernd Preininger; Georg N. Duda; Hinnerk Gerigk; Jonas Bruckner; Agnes Ellinghaus; F. Andrea Sass; Carsten Perka; Katharina Schmidt-Bleek; Anke Dienelt

Sufficient angiogenesis is crucial during tissue regeneration and therefore also pivotal in bone defect healing. Recently, peripheral blood derived progenitor cells have been identified to have in addition to their angiogenic potential also osteogenic characteristics, leading to the hypothesis that bone regeneration could be stimulated by local administration of these cells. The aim of this study was to evaluate the angiogenic potential of locally administered progenitor cells to improve bone defect healing. Cells were separated from the peripheral blood of donor animals using the markers CD34 and CD133. Results of the in vitro experiments confirmed high angiogenic potential in the CD133(+) cell group. CD34(+) and CD133(+) cells were tested in an in vivo rat femoral defect model of delayed healing for their positive effect on the healing outcome. An increased callus formation and higher bone mineral density of callus tissue was found after the CD133(+) cell treatment compared to the group treated with CD34(+) cells and the control group without cells. Histological findings confirmed an increase in vessel formation and mineralization at day 42 in the osteotomy gap after CD133(+) cell transplantation. The higher angiogenic potential of CD133(+) cells from the in vitro experients therefore correlates with the in vivo data. This study demonstrates the suitability of angiogenic precursors to further bone healing and gives an indication that peripheral blood is a promising source for progenitor cells circumventing the problems associated with bone marrow extraction.


Acta Biomaterialia | 2017

In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect

Amaia Cipitria; Kathrin Boettcher; Sophia Schoenhals; Daniela S. Garske; Katharina Schmidt-Bleek; Agnes Ellinghaus; Anke Dienelt; Anja Peters; Manav Mehta; Christopher M. Madl; Nathaniel Huebsch; David J. Mooney; Georg N. Duda

In-situ tissue regeneration aims to utilize the bodys endogenous healing capacity through the recruitment of host stem or progenitor cells to an injury site. Stromal cell-derived factor-1α (SDF-1α) is widely discussed as a potent chemoattractant. Here we use a cell-free biomaterial-based approach to (i) deliver SDF-1α for the recruitment of endogenous bone marrow-derived stromal cells (BMSC) into a critical-sized segmental femoral defect in rats and to (ii) induce hydrogel stiffness-mediated osteogenic differentiation in-vivo. Ionically crosslinked alginate hydrogels with a stiffness optimized for osteogenic differentiation were used. Fast-degrading porogens were incorporated to impart a macroporous architecture that facilitates host cell invasion. Endogenous cell recruitment to the defect site was successfully triggered through the controlled release of SDF-1α. A trend for increased bone volume fraction (BV/TV) and a significantly higher bone mineral density (BMD) were observed for gels loaded with SDF-1α, compared to empty gels at two weeks. A trend was also observed, albeit not statistically significant, towards matrix stiffness influencing BV/TV and BMD at two weeks. However, over a six week time-frame, these effects were insufficient for bone bridging of a segmental femoral defect. While mechanical cues combined with ex-vivo cell encapsulation have been shown to have an effect in the regeneration of less demanding in-vivo models, such as cranial defects of nude rats, they are not sufficient for a SDF-1α mediated in-situ regeneration approach in segmental femoral defects of immunocompetent rats, suggesting that additional osteogenic cues may also be required. STATEMENT OF SIGNIFICANCE Stromal cell-derived factor-1α (SDF-1α) is a chemoattractant used to recruit host cells for tissue regeneration. The concept that matrix stiffness can direct mesenchymal stromal cell (MSC) differentiation into various lineages was described a decade ago using in-vitro experiments. Recently, alginate hydrogels with an optimized stiffness and ex-vivo encapsulated MSCs were shown to have an effect in the regeneration of skull defects of nude rats. Here, we apply this material system, loaded with SDF-1α and without encapsulated MSCs, to (i) recruit endogenous cells and (ii) induce stiffness-mediated osteogenic differentiation in-vivo, using as model system a load-bearing femoral defect in immunocompetent rats. While a cell-free approach is of great interest from a translational perspective, the current limitations are described.


Journal of Bone and Mineral Research | 2017

CD31+ Cells From Peripheral Blood Facilitate Bone Regeneration in Biologically Impaired Conditions Through Combined Effects on Immunomodulation and Angiogenesis

F. Andrea Sass; Katharina Schmidt-Bleek; Agnes Ellinghaus; Sebastian Filter; Alexander S. Rose; Bernd Preininger; Simon Reinke; Sven Geissler; Hans-Dieter Volk; Georg N. Duda; Anke Dienelt

Controlled revascularization and inflammation are key elements regulating endogenous regeneration after (bone) tissue trauma. Peripheral blood‐derived cell subsets, such as regulatory T‐helper cells and circulating (endothelial) progenitor cells, respectively, can support endogenous tissue healing, whereas effector T cells that are associated with an aged immune system can hinder bone regeneration. CD31 is expressed by diverse leukocytes and is well recognized as a marker of circulating endothelial (precursor) cells; however, CD31 is absent from the surface of differentiated effector T cells. Thus, we hypothesized that by separating the inhibitory fractions from the supportive fractions of circulating cells within the peripheral blood (PB) using the CD31 marker, bone regeneration in biologically compromised conditions, such as those observed in aged patients, could be improved. In support of our hypothesis, we detected an inverse correlation between CD31+ cells and effector T cells in the hematomas of human fracture patients, dependent on the age of the patient. Furthermore, we demonstrated the regenerative capacity of human PB‐CD31+ cells in vitro. These findings were translated to a clinically relevant rat model of impaired bone healing. The transplantation of rat PB‐CD31+ cells advanced bone tissue restoration in vivo and was associated with an early anti‐inflammatory response, the stimulation of (re)vascularization, and reduced fibrosis. Interestingly, the depletion or enrichment of the highly abundant CD31+/14+ monocytes from the mixed CD31+ cell population diminished tissue regeneration at different levels, suggesting combined effects within the PB‐CD31+ subsets. In summary, an intraoperative enrichment of PB‐CD31+ cells might be a novel option to facilitate endogenous regeneration under biologically impaired situations by supporting immunomodulation and vascularization.

Collaboration


Dive into the Anke Dienelt's collaboration.

Researchain Logo
Decentralizing Knowledge