Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharina Schmidt-Bleek is active.

Publication


Featured researches published by Katharina Schmidt-Bleek.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Advanced Drug Delivery Reviews | 2012

Biomaterial delivery of morphogens to mimic the natural healing cascade in bone

Manav Mehta; Katharina Schmidt-Bleek; Georg N. Duda; David J. Mooney

Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing.


Cell and Tissue Research | 2012

Inflammatory phase of bone healing initiates the regenerative healing cascade

Katharina Schmidt-Bleek; Hanna Schell; Norma Schulz; Paula Hoff; Carsten Perka; Frank Buttgereit; Hans-Dieter Volk; Jasmin Lienau; Georg N. Duda

Bone healing commences with an inflammatory reaction which initiates the regenerative healing process leading in the end to reconstitution of bone. An unbalanced immune reaction during this early bone healing phase is hypothesized to disturb the healing cascade in a way that delays bone healing and jeopardizes the successful healing outcome. The immune cell composition and expression pattern of angiogenic factors were investigated in a sheep bone osteotomy model and compared to a mechanically-induced impaired/delayed bone healing group. In the impaired/delayed healing group, significantly higher T cell percentages were present in the bone hematoma and the bone marrow adjacent to the osteotomy gap when compared to the normal healing group. This was mirrored in the higher cytotoxic T cell percentage detected under delayed bone healing conditions indicating longer pro-inflammatory processes. The highly activated periosteum adjourning the osteotomy gap showed lower expression of hematopoietic stem cell markers and angiogenic factors such as heme oxygenase and vascular endothelial growth factor. This indicates a deferred revascularization of the injured area due to ongoing pro-inflammatory processes in the delayed healing group. Results from this study suggest that there are unfavorable immune cells and factors participating in the initial healing phase. In conclusion, identifying beneficial aspects may lead to promising therapeutical approaches that might benefit further by eliminating the unfavorable factors.


Science Translational Medicine | 2013

Terminally Differentiated CD8+ T Cells Negatively Affect Bone Regeneration in Humans

Simon Reinke; Sven Geissler; William R. Taylor; Katharina Schmidt-Bleek; Kerstin Juelke; Verena Schwachmeyer; Michael Dahne; Tony Hartwig; Levent Akyüz; Christian Meisel; Nadine Unterwalder; Navrag B. Singh; Petra Reinke; Norbert P. Haas; Hans-Dieter Volk; Georg N. Duda

A subset of T cells inhibits bone regeneration in humans. No Bones About It Sticks and stones may break your bones, but immune cells will not hurt you, at least if Reinke et al. have anything to say about it. The immune system seems to have a hand in everything these days, and bone repair is no exception. T cells have been implicated in modulating bone fracture repair, even in the absence of infection. Reinke et al. take these studies into patients and find that delayed fracture healing correlated with a subset of T cells—terminally differentiated effector memory CD8+ T (TEMRA) cells. The authors examined the number of CD8+ TEMRA cells over time and found that the difference in CD8+ TEMRA cell number in patients with delayed healing reflected the individual’s immune profile, or lifelong response to infection, rather than a more acute, fracture-related event. They specifically found these cells in fracture hematoma, one of the earliest stages of fracture healing. They then took these studies into mice and found that the absence of CD8+ T cells improved bone regeneration, whereas adding CD8+ T cells impaired fracture healing. This mechanistic link supported their association in patients and suggests that these CD8+ TEMRA cells may be targeted or serve as markers for intervention in patients with delayed bone fracture healing. There is growing evidence that adaptive immunity contributes to endogenous regeneration processes: For example, endogenous bone fracture repair is modulated by T cells even in the absence of infection. Because delayed or incomplete fracture healing is associated with poor long-term outcomes and high socioeconomic costs, we investigated the relationship between an individual’s immune reactivity and healing outcome. Our study revealed that delayed fracture healing significantly correlated with enhanced levels of terminally differentiated CD8+ effector memory T (TEMRA) cells (CD3+CD8+CD11a++CD28−CD57+ T cells) in peripheral blood. This difference was long lasting, reflecting rather the individual’s immune profile in response to lifelong antigen exposure than a post-fracture reaction. Moreover, CD8+ TEMRA cells were enriched in fracture hematoma; these cells were the major producers of interferon-γ/tumor necrosis factor–α, which inhibit osteogenic differentiation and survival of human mesenchymal stromal cells. Accordingly, depletion of CD8+ T cells in a mouse osteotomy model resulted in enhanced endogenous fracture regeneration, whereas a transfer of CD8+ T cells impaired the healing process. Our data demonstrate the high impact of the individual adaptive immune profile on endogenous bone regeneration. Quantification of CD8+ TEMRA cells represents a potential marker for the prognosis of the healing outcome and opens new opportunities for early and targeted intervention strategies.


Journal of Orthopaedic Research | 2009

Differential regulation of blood vessel formation between standard and delayed bone healing

Jasmin Lienau; Katharina Schmidt-Bleek; Anja Peters; Franek Haschke; Georg N. Duda; Carsten Perka; Hermann J. Bail; Norbert Schütze; Franz Jakob; Hanna Schell

Blood vessel formation is a prerequisite for bone healing. In this study, we tested the hypothesis that a delay in bone healing is associated with an altered regulation of blood vessel formation. A tibial osteotomy was performed in two groups of sheep and stabilized with either a rigid external fixator leading to standard healing or with a highly rotationally unstable one leading to delayed healing. At days 4, 7, 9, 11, 14, 21, and 42 after surgery, total RNA was extracted from the callus. Gene expressions of vWF, an endothelial cell marker, and of several molecules related to blood vessel formation were studied by qPCR. Furthermore, histology was performed on fracture hematoma and callus sections. Histologically, the first blood vessels were detected at day 7 in both groups. mRNA expression levels of vWF, Ang1, Ang2, VEGF, CYR61, FGF2, MMP2, and TIMP1 were distinctly lower in the delayed compared to the standard healing group at several time points. Based on differential expression patterns, days 7 and 21 postoperatively were revealed to be essential time points for vascularization of the ovine fracture callus. This work demonstrates for the first time a differential regulation of blood vessel formation between standard and mechanically induced delayed healing in a sheep osteotomy model.


Bone | 2018

Macrophages in bone fracture healing: Their essential role in endochondral ossification

Claudia Schlundt; Thaqif El Khassawna; Alessandro Serra; Anke Dienelt; Sebastian Wendler; Hanna Schell; Nico van Rooijen; Andreas Radbruch; Richard Lucius; Susanne Hartmann; Georg N. Duda; Katharina Schmidt-Bleek

In fracture healing, skeletal and immune system are closely interacting through common cell precursors and molecular mediators. It is thought that the initial inflammatory reaction, which involves migration of macrophages into the fracture area, has a major impact on the long term outcome of bone repair. Interestingly, macrophages reside during all stages of fracture healing. Thus, we hypothesized a critical role for macrophages in the subsequent phases of bone regeneration. This study examined the impact of in vivo induced macrophage reduction, using clodronate liposomes, on the different healing phases of bone repair in a murine model of a standard closed femoral fracture. A reduction in macrophages had no obvious effect on the early fracture healing phase, but resulted in a delayed hard callus formation, thus severely altering endochondral ossification. Clodronate treated animals clearly showed delayed bony consolidation of cartilage and enhanced periosteal bone formation. Therefore, we decided to backtrack macrophage distribution during fracture healing in non-treated mice, focusing on the identification of the M1 and M2 subsets. We observed that M2 macrophages were clearly prevalent during the ossification phase. Therefore enhancement of M2 phenotype in macrophages was investigated as a way to further bone healing. Induction of M2 macrophages through interleukin 4 and 13 significantly enhanced bone formation during the 3week investigation period. These cumulative data illustrate their so far unreported highly important role in endochondral ossification and the necessity of a fine balance in M1/M2 macrophage function, which appears mandatory to fracture healing and successful regeneration.


Bone | 2014

T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion.

Ireen Könnecke; Alessandro Serra; Thaqif El Khassawna; Claudia Schlundt; Hanna Schell; Anja E. Hauser; Agnes Ellinghaus; Hans-Dieter Volk; Andreas Radbruch; Georg N. Duda; Katharina Schmidt-Bleek

Fracture healing is a regenerative process in which bone is restored without scar tissue formation. The healing cascade initiates with a cycle of inflammation, cell migration, proliferation and differentiation. Immune cells invade the fracture site immediately upon bone damage and contribute to the initial phase of the healing process by recruiting accessory cells to the injury site. However, little is known about the role of the immune system in the later stages of fracture repair, in particular, whether lymphocytes participate in soft and hard callus formation. In order to answer this question, we analyzed femoral fracture healing in mice by confocal microscopy. Surprisingly, after the initial inflammatory phase, when soft callus developed, T and B cells withdrew from the fracture site and were detectable predominantly at the femoral neck and knee. Thereafter lymphocytes massively infiltrated the callus region (around day 14 after injury), during callus mineralization. Interestingly, lymphocytes were not found within cartilaginous areas of the callus but only nearby the newly forming bone. During healing B cell numbers seemed to exceed those of T cells and B cells progressively underwent effector maturation. Both, osteoblasts and osteoclasts were found to have direct cell-cell contact with lymphocytes, strongly suggesting a regulatory role of the immune cells specifically in the later stages of fracture healing.


Soft Matter | 2010

Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach?

Bettina M. Willie; Ansgar Petersen; Katharina Schmidt-Bleek; Amaia Cipitria; Manav Mehta; Patrick Strube; Jasmin Lienau; Britt Wildemann; Peter Fratzl; Georg N. Duda

This review aims to address the current limitations in biomaterial scaffold-based treatment strategies for bone defect healing and suggests new, alternative approaches that merit further investigation. The question of whether the biomaterial scaffold properties should mimic the natural extracellular matrix of mature tissue or some phase of the dynamic range of tissues observed during the healing process is discussed. Additionally, the authors advocate for a biomimetic approach, which uses the endogenous secondary fracture healing processes to inform the design of scaffold constructs. In particular, the mechanical environment is emphasized as an important factor influencing the clinical success of these constructs. The authors stress the need for a scaffolds design that provides an optimal mechanical environment for cell fate, supplies necessary signals and nutrition to the cells and, thus, more closely mimics the natural healing cascade.


Journal of Orthopaedic Research | 2009

Cellular composition of the initial fracture hematoma compared to a muscle hematoma: a study in sheep.

Katharina Schmidt-Bleek; Hanna Schell; Paula Kolar; Michael Pfaff; Carsten Perka; Frank Buttgereit; Georg N. Duda; Jasmin Lienau

Bone fracture leads to a cycle of inflammation, cellular migration, and proliferation to restore tissue integrity. Immune cells at the site of injury are involved especially in the early phase of the healing process, but little is known about the cells present in the initial fracture hematoma. The hypothesis of this study was that the cellular composition in a fracture hematoma differs from that found in a muscle hematoma and that these divergences get more pronounced over time. By using a reproducible osteotomy model and muscle trauma in sheep the distributions of the immune cell subpopulations were evaluated 1 and 4 h after surgery. The cell amount within the first 4 h increased in both hematoma. The number of dead cells was higher in the muscle hematoma. One hour postoperatively the initial fracture hematoma revealed a lower granulocyte percentage compared to the muscle hematoma. The ratio of T helper to cytotoxic T cells was higher in the fracture hematoma compared to the muscle hematoma at both investigated time points. B cell percentage increased in the fracture but not in the muscle hematoma from 1 to 4 h. This is the first study that compares the immune cell subpopulations of a fracture and muscle hematoma.


Journal of Tissue Engineering and Regenerative Medicine | 2014

Initial immune reaction and angiogenesis in bone healing

Katharina Schmidt-Bleek; Hanna Schell; Jasmin Lienau; Norma Schulz; Paula Hoff; Michael Pfaff; Gregor Schmidt; Claudia Martin; Carsten Perka; Frank Buttgereit; Hans-Dieter Volk; Georg N. Duda

During hematoma formation following injury, an inflammatory reaction ensues as an initial step in the healing process. As granulation tissue matures, revascularization is a prerequisite for successful healing. The hypothesis of this study was that scarless tissue reconstitution in the regenerative bone healing process is dependent on a balanced immune reaction that initiates revasculatory steps. To test this hypothesis, cellular composition and expression profiles of a bone hematoma (regenerative, scarless) was compared with a muscle soft tissue hematoma (healing with a scar) in a sheep model. Upregulation of regulatory T helper cells and anti‐inflammatory cytokine expression (IL‐10) coincided with an upregulation of angiogenic factors (HIF1α and HIF1α regulated genes) in the regenerative bone hematoma but not in the soft tissue hematoma. These results indicate that the timely termination of inflammation and early onset of revascularization are interdependent and essential for a regenerative healing process. Prolonged pro‐inflammatory signaling occurring in a delayed bone‐healing model supports the finding that timely termination of inflammation furthers the regenerative process. Differing cellular compositions are due to different cell sources invading the hematoma, determining the ensuing cytokine expression profile and thus paving the path for regenerative healing in bone or the formation of scar tissue in muscle injury. Copyright

Collaboration


Dive into the Katharina Schmidt-Bleek's collaboration.

Researchain Logo
Decentralizing Knowledge