Anke Heigele
University of Ulm
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anke Heigele.
Cell Host & Microbe | 2014
Silvia F. Kluge; Katharina Mack; Shilpa S. Iyer; François M. Pujol; Anke Heigele; Gerald H. Learn; Shariq M. Usmani; Daniel Sauter; Simone Joas; Dominik Hotter; Frederic Bibollet-Ruche; Lindsey J. Plenderleith; Martine Peeters; Matthias Geyer; Paul M. Sharp; Oliver T. Fackler; Beatrice H. Hahn; Frank Kirchhoff
Most simian immunodeficiency viruses use their Nef protein to antagonize the host restriction factor tetherin. A deletion in human tetherin confers Nef resistance, representing a hurdle to successful zoonotic transmission. HIV-1 group M evolved to utilize the viral protein U (Vpu) to counteract tetherin. Although HIV-1 group O has spread epidemically in humans, it has not evolved a Vpu-based tetherin antagonism. Here we show that HIV-1 group O Nef targets a region adjacent to this deletion to inhibit transport of human tetherin to the cell surface, enhances virion release, and increases viral resistance to inhibition by interferon-α. The Nef protein of the inferred common ancestor of group O viruses is also active against human tetherin. Thus, Nef-mediated antagonism of human tetherin evolved prior to the spread of HIV-1 group O and likely facilitated secondary virus transmission. Our results may explain the epidemic spread of HIV-1 group O.
PLOS Pathogens | 2012
Daniel Sauter; Daniel Unterweger; Michael Vogl; Shariq M. Usmani; Anke Heigele; Silvia F. Kluge; Elisabeth Hermkes; Markus Moll; Edward D. Barker; Martine Peeters; Gerald H. Learn; Frederic Bibollet-Ruche; Joëlle V. Fritz; Oliver T. Fackler; Beatrice H. Hahn; Frank Kirchhoff
HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness.
PLOS Pathogens | 2014
Nichole R. Klatt; Steven E. Bosinger; Melicent C. Peck; Laura E. Richert-Spuhler; Anke Heigele; Jillian Gile; Nirav B. Patel; Jessica Taaffe; Boris Julg; David Camerini; Carlo Torti; Jeffrey N. Martin; Steven G. Deeks; Elizabeth Sinclair; Frederick Hecht; Michael M. Lederman; Mirko Paiardini; Frank Kirchhoff; Jason M. Brenchley; Peter W. Hunt; Guido Silvestri
A rare subset of HIV-infected individuals, designated viremic non-progressors (VNP), remain asymptomatic and maintain normal levels of CD4+ T-cells despite persistently high viremia. To identify mechanisms potentially responsible for the VNP phenotype, we compared VNPs (average >9 years of HIV infection) to HIV-infected individuals who have similar CD4+ T-cell counts and viral load, but who are likely to progress if left untreated (“putative progressors”, PP), thus avoiding the confounding effect of differences related to substantial CD4+ T cell depletion. We found that VNPs, compared to PPs, had preserved levels of CD4+ stem cell memory cells (TSCM (p<0.0001), which was associated with decreased HIV infection of these cells in VNPs (r = −0.649, p = 0.019). In addition, VNPs had decreased HIV infection in CD4+ central memory (TCM) cells (p = 0.035), and the total number of TCM cells was associated with increased proliferation of memory CD4+ T cells (r = 0.733, p = 0.01). Our results suggest that, in HIV-infected VNPs, decreased infection of CD4+ TCM and TSCM, cells are involved in preservation of CD4+ T cell homeostasis and lack of disease progression despite high viremia.
Cell Host & Microbe | 2012
Nicola Götz; Daniel Sauter; Shariq M. Usmani; Joëlle V. Fritz; Christine Goffinet; Anke Heigele; Matthias Geyer; Frederic Bibollet-Ruche; Gerald H. Learn; Oliver T. Fackler; Beatrice H. Hahn; Frank Kirchhoff
The interferon-induced host restriction factor tetherin poses a barrier for SIV transmission from primates to humans. After cross-species transmission, the chimpanzee precursor of pandemic HIV-1 switched from the accessory protein Nef to Vpu to effectively counteract human tetherin. As we report here, the experimental reintroduction of HIV-1 into its original chimpanzee host resulted in a virus that can use both Vpu and Nef to antagonize chimpanzee tetherin. Functional analyses demonstrated that alterations in and near the highly conserved ExxxLL motif in the C-terminal loop of Nef were critical for the reacquisition of antitetherin activity. Strikingly, just two amino acid changes allowed HIV-1 Nef to counteract chimpanzee tetherin and promote virus release. Our data demonstrate that primate lentiviruses can reacquire lost accessory gene functions during a single in vivo passage and suggest that other functional constraints keep Nef ready to regain antitetherin activity.
Journal of Clinical Investigation | 2012
Frederic Bibollet-Ruche; Anke Heigele; Brandon F. Keele; Juliet L. Easlick; Julie M. Decker; Jun Takehisa; Gerald H. Learn; Paul M. Sharp; Beatrice H. Hahn; Frank Kirchhoff
SIVs infecting wild-living apes in west central Africa have crossed the species barrier to humans on at least four different occasions, one of which spawned the AIDS pandemic. Although the chimpanzee precursor of pandemic HIV-1 strains must have been able to infect humans, the capacity of SIVcpz strains to replicate in human lymphoid tissues (HLTs) is not known. Here, we show that SIVcpz strains from two chimpanzee subspecies are capable of replicating in human tonsillary explant cultures, albeit only at low titers. However, SIVcpz replication in HLT was significantly improved after introduction of a previously identified human-specific adaptation at position 30 in the viral Gag matrix protein. An Arg or Lys at this position significantly increased SIVcpz replication in HLT, while the same mutation reduced viral replication in chimpanzee-derived CD4(+) T cells. Thus, naturally occurring SIVcpz strains are capable of infecting HLTs, the major site of HIV-1 replication in vivo. However, efficient replication requires the acquisition of a host-specific adaptation in the viral matrix protein. These results identify Gag matrix as a major determinant of SIVcpz replication fitness in humans and suggest a critical role in the emergence of HIV/AIDS.
Retrovirology | 2014
Herwig Koppensteiner; Kristin Höhne; Marcos Vinicius Gondim; François-Xavier Gobert; Miriam Widder; Swantje Gundlach; Anke Heigele; Frank Kirchhoff; Michael Winkler; Philippe Benaroch; Michael Schindler
BackgroundIncreased cellular iron levels are associated with high mortality in HIV-1 infection. Moreover iron is an important cofactor for viral replication, raising the question whether highly divergent lentiviruses actively modulate iron homeostasis. Here, we evaluated the effect on cellular iron uptake upon expression of the accessory protein Nef from different lentiviral strains.ResultsSurface Transferrin receptor (TfR) levels are unaffected by Nef proteins of HIV-1 and its simian precursors but elevated in cells expressing Nefs from most other primate lentiviruses due to reduced TfR internalization. The SIV Nef-mediated reduction of TfR endocytosis is dependent on an N-terminal AP2 binding motif that is not required for downmodulation of CD4, CD28, CD3 or MHCI. Importantly, SIV Nef-induced inhibition of TfR endocytosis leads to the reduction of Transferrin uptake and intracellular iron concentration and is accompanied by attenuated lentiviral replication in macrophages.ConclusionInhibition of Transferrin and thereby iron uptake by SIV Nef might limit viral replication in myeloid cells. Furthermore, this new SIV Nef function could represent a virus-host adaptation that evolved in natural SIV-infected monkeys.
Cell Host & Microbe | 2016
Anke Heigele; Dorota Kmiec; Kerstin Regensburger; Simon Langer; Lukas Peiffer; Christina M. Stürzel; Daniel Sauter; Martine Peeters; Massimo Pizzato; Gerald H. Learn; Beatrice H. Hahn; Frank Kirchhoff
The cellular factor serine incorporator 5 (SERINC5) impairs HIV-1 infectivity but is antagonized by the viral Nef protein. We analyzed the anti-SERINC5 activity of Nef proteins across primate lentiviruses and examined whether SERINC5 represents a barrier to cross-species transmissions and/or within-species viral spread. HIV-1, HIV-2, and SIV Nefs counteract human, ape, monkey, and murine SERINC5 orthologs with similar potency. However, HIV-1 Nefs are more active against SERINC5 than HIV-2 Nefs, and chimpanzee SIV (SIVcpz) Nefs are more potent than those of their monkey precursors. Additionally, Nefs of HIV and most SIVs rely on the dileucine motif in the C-terminal loop for anti-SERINC5 activity, while the Nef from colobus SIV (SIVcol) evolved different inhibitory mechanisms. We also found a significant correlation between anti-SERINC5 potency and the SIV prevalence in the respective ape and monkey species. Thus, Nef-mediated SERINC5 antagonism may determine the ability of primate lentiviruses to spread within natural hosts.
Cell Reports | 2015
Onofrio Zirafi; Kyeong-Ae Kim; Ludger Ständker; Katharina Mohr; Daniel Sauter; Anke Heigele; Silvia F. Kluge; Eliza Wiercinska; Doreen Chudziak; Rudolf Richter; Barbara Moepps; Peter Gierschik; Virag Vas; Hartmut Geiger; Markus Lamla; Tanja Weil; Timo Burster; Andreas Zgraja; François Daubeuf; Nelly Frossard; Muriel Hachet-Haas; Fabian Heunisch; Christoph Reichetzeder; Jean-Luc Galzi; Javier Pérez-Castells; Angeles Canales-Mayordomo; Jesús Jiménez-Barbero; Guillermo Giménez-Gallego; Marion Schneider; James Shorter
CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.
Journal of Virology | 2012
Anke Heigele; Michael Schindler; Clement W. Gnanadurai; Jolie A. Leonard; Kathleen L. Collins; Frank Kirchhoff
ABSTRACT It is well established that the Nef proteins of human and simian immunodeficiency viruses (HIV and SIV) modulate major histocompatibility complex class I (MHC-I) cell surface expression to protect infected cells against lysis by cytotoxic T lymphocytes (CTLs). Recent data supported the observation that Nef also manipulates CTLs directly by down-modulating CD8αβ (J. A. Leonard, T. Filzen, C. C. Carter, M. Schaefer, and K. L. Collins, J. Virol. 85:6867–6881, 2011), but it remained unknown whether this Nef activity is conserved between different lineages of HIV and SIV. In this study, we examined a total of 42 nef alleles from 16 different primate lentiviruses representing most major lineages of primate lentiviruses, as well as nonpandemic HIV-1 strains and the direct precursors of HIV-1 (SIVcpz and SIVgor). We found that the vast majority of these nef alleles strongly down-modulate CD8β in human T cells. Primate lentiviral Nefs generally interacted specifically with the cytoplasmic tail of CD8β, and down-modulation of this receptor was dependent on the conserved dileucine-based motif and two adjacent acidic residues (DD/E) in the C-terminal flexible loop of SIV Nef proteins. Both of these motifs are known to be important for the interaction of HIV-1 Nef with AP-2, and they were also shown to be critical for down-modulation of CD4 and CD28, but not MHC-I, by SIV Nefs. Our results show that down-modulation of CD4, CD8β, and CD28 involves largely overlapping (but not identical) domains and is most likely dependent on conserved interactions of primate lentiviral Nefs with cellular adaptor proteins. Furthermore, our data demonstrate that Nef-mediated down-modulation of CD8αβ is a fundamental property of primate lentiviruses and suggest that direct manipulation of CD8+ T cells plays a relevant role in viral immune evasion.
Retrovirology | 2014
Anke Heigele; David Camerini; Angélique B vanât Wout; Frank Kirchhoff
BackgroundA small minority of HIV-1-infected individuals show low levels of immune activation and do not develop immunodeficiency despite high viral loads. Since the accessory viral Nef protein modulates T cell activation and plays a key role in the pathogenesis of AIDS, we investigated whether specific properties of Nef may be associated with this highly unusual clinical outcome of HIV-1 infection.FindingsComprehensive functional analyses of sequential HIV-1 strains from three viremic long-term non-progressors (VNP) showed that they encode full-length Nef proteins that are capable of modulating CD4, CD28, CD8ß, MHC-I and CD74 cell surface expression. Similar to Nef proteins from HIV-1-infected individuals with progressive infection (P-Nefs) and unlike Nefs from simian immunodeficiency viruses (SIVs) that do not cause chronic immune activation and disease in their natural simian hosts, VNP-Nefs were generally unable to down-modulate TCR-CD3 cell surface expression to block T cell activation and apoptosis. On average, VNP-Nefs suppressed NF-AT activation less effectively than P-Nefs and were slightly less active in enhancing NF-κB activity. Finally, we found that VNP-Nefs increased virion infectivity and enhanced HIV-1 replication and cytopathicity in primary human cells and in ex vivo infected lymphoid tissues.ConclusionsOur results show that nef alleles from VNPs and progressors of HIV-1 infection show only modest differences in established functions. Thus, the lack of chronic immune activation and disease progression in HIV-1-infected VNPs is apparently not associated with unusual functional properties of the accessory viral Nef protein.