Silvia F. Kluge
University of Ulm
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia F. Kluge.
Cell Host & Microbe | 2016
Christian Krapp; Dominik Hotter; Ali Gawanbacht; Paul J. McLaren; Silvia F. Kluge; Christina M. Stürzel; Katharina Mack; Elisabeth Reith; Susanne Engelhart; Angela Ciuffi; Veit Hornung; Daniel Sauter; Amalio Telenti; Frank Kirchhoff
Guanylate binding proteins (GBPs) are an interferon (IFN)-inducible subfamily of guanosine triphosphatases (GTPases) with well-established activity against intracellular bacteria and parasites. Here we show that GBP5 potently restricts HIV-1 and other retroviruses. GBP5 is expressed in the primary target cells of HIV-1, where it impairs viral infectivity by interfering with the processing and virion incorporation of the viral envelope glycoprotein (Env). GBP5 levels in macrophages determine and inversely correlate with infectious HIV-1 yield over several orders of magnitude, which may explain the high donor variability in macrophage susceptibility to HIV. Antiviral activity requires Golgi localization of GBP5, but not its GTPase activity. Start codon mutations in the accessory vpu gene from macrophage-tropic HIV-1 strains conferred partial resistance to GBP5 inhibition by increasing Env expression. Our results identify GBP5 as an antiviral effector of the IFN response and may explain the increased frequency of defective vpu genes in primary HIV-1 strains.
Cell Reports | 2015
Daniel Sauter; Dominik Hotter; Benoît Van Driessche; Christina M. Stürzel; Silvia F. Kluge; Steffen Wildum; Hangxing Yu; Bernd Baumann; Thomas Wirth; Jean-Christophe Jc Plantier; Marie Leoz; Beatrice H. Hahn; Carine Van Lint; Frank Kirchhoff
SUMMARY NF-κB is essential for effective transcription of primate lentiviral genomes and also activates antiviral host genes. Here, we show that the early protein Nef of most primate lentiviruses enhances NF-κB activation. In contrast, the late protein Vpu of HIV-1 and its simian precursors inhibits activation of NF-κB, even in the presence of Nef. Although this effect of Vpu did not correlate with its ability to interact with β-TrCP, it involved the stabilization of IκB and reduced nuclear translocation of p65. Interestingly, however, Vpu did not affect casein kinase II-mediated phosphorylation of p65. Lack of Vpu was associated with increased NF-κB activation and induction of interferon and interferon-stimulated genes (ISGs) in HIV-1-infected T cells. Thus, HIV-1 and its simian precursors employ Nef to boost NF-κB activation early during the viral life cycle to initiate proviral transcription, while Vpu is used to downmodulate NF-κB-dependent expression of ISGs at later stages.
Cell Host & Microbe | 2014
Silvia F. Kluge; Katharina Mack; Shilpa S. Iyer; François M. Pujol; Anke Heigele; Gerald H. Learn; Shariq M. Usmani; Daniel Sauter; Simone Joas; Dominik Hotter; Frederic Bibollet-Ruche; Lindsey J. Plenderleith; Martine Peeters; Matthias Geyer; Paul M. Sharp; Oliver T. Fackler; Beatrice H. Hahn; Frank Kirchhoff
Most simian immunodeficiency viruses use their Nef protein to antagonize the host restriction factor tetherin. A deletion in human tetherin confers Nef resistance, representing a hurdle to successful zoonotic transmission. HIV-1 group M evolved to utilize the viral protein U (Vpu) to counteract tetherin. Although HIV-1 group O has spread epidemically in humans, it has not evolved a Vpu-based tetherin antagonism. Here we show that HIV-1 group O Nef targets a region adjacent to this deletion to inhibit transport of human tetherin to the cell surface, enhances virion release, and increases viral resistance to inhibition by interferon-α. The Nef protein of the inferred common ancestor of group O viruses is also active against human tetherin. Thus, Nef-mediated antagonism of human tetherin evolved prior to the spread of HIV-1 group O and likely facilitated secondary virus transmission. Our results may explain the epidemic spread of HIV-1 group O.
PLOS Pathogens | 2012
Daniel Sauter; Daniel Unterweger; Michael Vogl; Shariq M. Usmani; Anke Heigele; Silvia F. Kluge; Elisabeth Hermkes; Markus Moll; Edward D. Barker; Martine Peeters; Gerald H. Learn; Frederic Bibollet-Ruche; Joëlle V. Fritz; Oliver T. Fackler; Beatrice H. Hahn; Frank Kirchhoff
HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness.
Science Translational Medicine | 2014
Onofrio Zirafi; Kyeong-Ae Kim; Nadia R. Roan; Silvia F. Kluge; Janis A. Müller; Shibo Jiang; Benjamin Mayer; Warner C. Greene; Frank Kirchhoff; Jan Münch
Endogenous amyloids in semen impair the antiretroviral efficacy of drugs targeting HIV directly, but do not impair maraviroc, which targets the cellular CCR5 receptor. Undermining Antiretroviral Drug Activity HIV microbicides potently inhibit the virus in vitro but have failed in clinical trials. Semen is a vector for mediating HIV transmission, and the amyloid fibrils in semen have been shown to boost HIV infectivity. Zirafi et al. now show that semen impairs the antiviral efficacy of microbicides that target HIV components. Only the microbicide maraviroc, which binds to the host CCR5 co-receptor for HIV entry, retains full antiviral activity in the presence of semen. These results help to explain why current microbicides have fallen short in performance when tested in clinical trials. These findings further suggest that future in vitro testing of microbicides should be performed in the presence of semen to better predict the antiretroviral efficacy in vivo. Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. We report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was maraviroc. This HIV entry inhibitor targets the host cell CCR5 co-receptor and was highly active against both untreated and semen-exposed HIV. These data help to explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission.
Cell | 2015
Silvia F. Kluge; Daniel Sauter; Frank Kirchhoff
Restriction factors are cellular proteins that inhibit viruses at different steps of their replication cycle and represent an important first line of defense against viral pathogens. This SnapShot provides an overview of cell-intrinsic antiviral factors, describes their properties, and illustrates the striking variety of antiviral mechanisms as well the sophisticated viral countermeasures. To view this SnapShot, open or download the PDF.
Retrovirology | 2015
Paul J. McLaren; Ali Gawanbacht; Nitisha Pyndiah; Christian Krapp; Dominik Hotter; Silvia F. Kluge; Nicola Götz; Jessica Heilmann; Katharina Mack; Daniel Sauter; Danielle Thompson; Jérémie Perreaud; Antonio Rausell; Miguel Muñoz; Angela Ciuffi; Frank Kirchhoff; Amalio Telenti
BackgroundKnown antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates.ResultsOur analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons.ConclusionsA limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells.
Cell Reports | 2015
Onofrio Zirafi; Kyeong-Ae Kim; Ludger Ständker; Katharina Mohr; Daniel Sauter; Anke Heigele; Silvia F. Kluge; Eliza Wiercinska; Doreen Chudziak; Rudolf Richter; Barbara Moepps; Peter Gierschik; Virag Vas; Hartmut Geiger; Markus Lamla; Tanja Weil; Timo Burster; Andreas Zgraja; François Daubeuf; Nelly Frossard; Muriel Hachet-Haas; Fabian Heunisch; Christoph Reichetzeder; Jean-Luc Galzi; Javier Pérez-Castells; Angeles Canales-Mayordomo; Jesús Jiménez-Barbero; Guillermo Giménez-Gallego; Marion Schneider; James Shorter
CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.
Virology | 2015
Petra Mlcochova; Luis Apolonia; Silvia F. Kluge; Aishwarya Sridharan; Frank Kirchhoff; Michael H. Malim; Daniel Sauter; Ravindra K. Gupta
Heterosexual HIV-1 transmission has been identified as a genetic bottleneck and a single transmitted/founder (T/F) variant with reduced sensitivity to type I interferon initiates productive infection in most cases. We hypothesized that particularly active accessory protein(s) may confer T/F viruses with a selective advantage in establishing HIV infection. Thus, we tested vpu, vif and nef alleles from six T/F and six chronic (CC) viruses in assays for 9 immune evasion activities involving the counteraction of interferon-stimulated genes and modulation of ligands known to activate innate immune cells. All functions were highly conserved with no significant differences between T/F and CC viruses, suggesting that these accessory protein functions are important throughout the course of infection.
Journal of Virology | 2015
Elena Heusinger; Silvia F. Kluge; Frank Kirchhoff; Daniel Sauter
ABSTRACT Tetherin is an interferon-inducible restriction factor targeting a broad range of enveloped viruses. Its antiviral activity depends on an unusual topology comprising an N-terminal transmembrane domain (TMD) followed by an extracellular coiled-coil region and a C-terminal glycosylphosphatidylinositol (GPI) anchor. One of the two membrane anchors is inserted into assembling virions, while the other remains in the plasma membrane of the infected cell. Thus, tetherin entraps budding viruses by physically bridging viral and cellular membranes. Although tetherin restricts the release of a large variety of diverse human and animal viruses, only mammalian orthologs have been described to date. Here, we examined the evolutionary origin of this protein and demonstrate that tetherin orthologs are also found in fish, reptiles, and birds. Notably, alligator tetherin efficiently blocks the release of retroviral particles. Thus, tetherin emerged early during vertebrate evolution and acquired its antiviral activity before the mammal/reptile divergence. Although there is only limited sequence homology, all orthologs share the typical topology. Two unrelated proteins of the slime mold Dictyostelium discoideum also adopt a tetherin-like configuration with an N-terminal TMD and a C-terminal GPI anchor. However, these proteins showed no evidence for convergent evolution and failed to inhibit virion release. In summary, our findings demonstrate that tetherin emerged at least 450 million years ago and is more widespread than previously anticipated. The early evolution of antiviral activity together with the high topology conservation but low sequence homology suggests that restriction of virus release is the primary function of tetherin. IMPORTANCE The continuous arms race with viruses has driven the evolution of a variety of cell-intrinsic immunity factors that inhibit different steps of the viral replication cycle. One of these restriction factors, tetherin, inhibits the release of newly formed progeny virions from infected cells. Although tetherin targets a broad range of enveloped viruses, including retro-, filo-, herpes-, and arenaviruses, the evolutionary origin of this restriction factor and its antiviral activity remained obscure. Here, we examined diverse vertebrate genomes for genes encoding cellular proteins that share with tetherin the highly unusual combination of an N-terminal transmembrane domain and a C-terminal glycosylphosphatidylinositol anchor. We show that tetherin orthologs are found in fish, reptiles, and birds and demonstrate that alligator tetherin efficiently inhibits the release of retroviral particles. Our findings identify tetherin as an evolutionarily ancient restriction factor and provide new important insights into the continuous arms race between viruses and their hosts.