Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anke Karabanov is active.

Publication


Featured researches published by Anke Karabanov.


The Journal of Neuroscience | 2008

Intelligence and Variability in a Simple Timing Task Share Neural Substrates in the Prefrontal White Matter

Fredrik Ullén; Lea Forsman; Örjan Blom; Anke Karabanov; Guy Madison

General intelligence is correlated with the mean and variability of reaction time in elementary cognitive tasks, as well as with performance on temporal judgment and discrimination tasks. This suggests a link between the temporal accuracy of neural activity and intelligence. However, it has remained unclear whether this link reflects top-down mechanisms such as attentional control and cognitive strategies or basic neural properties that influence both abilities. Here, we investigated whether millisecond variability in a simple, automatic timing task, isochronous tapping, correlates with intellectual performance and, using voxel-based morphometry, whether these two tasks share neuroanatomical substrates. Stability of tapping and intelligence were correlated and related to regional volume in overlapping right prefrontal white matter regions. These results suggest a bottom-up explanation of the link between temporal stability and intellectual performance, in which more extensive prefrontal connectivity underlies individual differences in both variables.


PLOS ONE | 2010

Thinking Outside a Less Intact Box: Thalamic Dopamine D2 Receptor Densities Are Negatively Related to Psychometric Creativity in Healthy Individuals

Örjan de Manzano; Simon Cervenka; Anke Karabanov; Lars Farde; Fredrik Ullén

Several lines of evidence support that dopaminergic neurotransmission plays a role in creative thought and behavior. Here, we investigated the relationship between creative ability and dopamine D2 receptor expression in healthy individuals, with a focus on regions where aberrations in dopaminergic function have previously been associated with psychotic symptoms and a genetic liability to schizophrenia. Scores on divergent thinking tests (Inventiveness battery, Berliner Intelligenz Struktur Test) were correlated with regional D2 receptor densities, as measured by Positron Emission Tomography, and the radioligands [11C]raclopride and [11C]FLB 457. The results show a negative correlation between divergent thinking scores and D2 density in the thalamus, also when controlling for age and general cognitive ability. Hence, the results demonstrate that the D2 receptor system, and specifically thalamic function, is important for creative performance, and may be one crucial link between creativity and psychopathology. We suggest that decreased D2 receptor densities in the thalamus lower thalamic gating thresholds, thus increasing thalamocortical information flow. In healthy individuals, who do not suffer from the detrimental effects of psychiatric disease, this may increase performance on divergent thinking tests. In combination with the cognitive functions of higher order cortical networks, this could constitute a basis for the generative and selective processes that underlie real life creativity.


NeuroImage | 2009

The dorsal auditory pathway is involved in performance of both visual and auditory rhythms

Anke Karabanov; Örjan Blom; Lea Forsman; Fredrik Ullén

We used functional magnetic resonance imaging to investigate the effect of two factors on the neural control of temporal sequence performance: the modality in which the rhythms had been trained, and the modality of the pacing stimuli preceding performance. The rhythms were trained 1-2 days before scanning. Each participant learned two rhythms: one was presented visually, the other auditorily. During fMRI, the rhythms were performed in blocks. In each block, four beats of a visual or auditory pacing metronome were followed by repetitive self-paced rhythm performance from memory. Data from the self-paced performance phase was analysed in a 2x2 factorial design, with the two factors Training Modality (auditory or visual) and Metronome Modality (auditory or visual), as well as with a conjunction analysis across all active conditions, to identify activations that were independent of both Training Modality and Metronome Modality. We found a significant main effect only for visual versus auditory Metronome Modality, in the left angular gyrus, due to a deactivation of this region after auditory pacing. The conjunction analysis revealed a set of brain areas that included dorsal auditory pathway areas (left temporo-parietal junction area and ventral premotor cortex), dorsal premotor cortex, the supplementary and presupplementary premotor areas, the cerebellum and the basal ganglia. We conclude that these regions are involved in controlling performance of well-learned rhythms, regardless of the modality in which the rhythms are trained and paced. This suggests that after extensive short-term training, all rhythms, even those that were both trained and paced in visual modality, had been transformed into auditory-motor representations. The deactivation of the angular cortex following auditory pacing may represent cross-modal auditory-visual inhibition.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dopamine D2 receptor density in the limbic striatum is related to implicit but not explicit movement sequence learning

Anke Karabanov; Simon Cervenka; Örjan de Manzano; Hans Forssberg; Lars Farde; Fredrik Ullén

A large body of literature suggests that motor sequence learning involves dopamine-modulated plastic processes in the basal ganglia. Sequence learning can occur both implicitly, without conscious awareness and intention to learn, and explicitly, i.e., under conscious control. Here, we investigated whether individual differences in implicit and explicit sequence learning of movement sequences in a group of 15 healthy participants are related to dopamine D2 receptor densities in functional subregions of the striatum. Sequence learning was assessed using the serial reaction time task, and measures of implicit and explicit knowledge were estimated using a process dissociation procedure. Correlation analyses were performed between these measures and D2 receptor densities, which had been measured previously with positron emission tomography. Striatal D2 densities were negatively related to measures of sequence learning. In the limbic subregion, D2 densities were specifically related to implicit but not explicit learning. These findings suggest that individual differences in striatal DA function underlie differences in sequence learning ability and support that implicit and explicit sequence learning depend on partly distinct neural circuitry. The findings are also in line with the general view that implicit learning systems are evolutionarily primitive and tend to rely more on phylogenetically old neural circuitry than does explicit learning and cognition.


Neuroscience Research | 2012

Differences in regional brain volume related to the extraversion-introversion dimension—A voxel based morphometry study

Lea Forsman; Örjan de Manzano; Anke Karabanov; Guy Madison; Fredrik Ullén

Extraverted individuals are sociable, behaviorally active, and happy. We report data from a voxel based morphometry study investigating, for the first time, if regional volume in gray and white matter brain regions is related to extraversion. For both gray and white matter, all correlations between extraversion and regional brain volume were negative, i.e. the regions were larger in introverts. Gray matter correlations were found in regions that included the right prefrontal cortex and the cortex around the right temporo-parietal junction--regions that are known to be involved in behavioral inhibition, introspection, and social-emotional processing, e.g. evaluation of social stimuli and reasoning about the mental states of others. White matter correlations extended from the brainstem to widespread cortical regions, and were largely due to global effects, i.e. a larger total white matter volume in introverts. We speculate that these white matter findings may reflect differences in ascending modulatory projections affecting cortical regions involved in behavioral regulation.


Brain Stimulation | 2013

Mapping different intra-hemispheric parietal-motor networks using twin Coil TMS.

Anke Karabanov; Chi-Chao Chao; Rainer Paine; Mark Hallett

BACKGROUND Accumulating evidence suggests anatomical and functional differences in connectivity between the anterior and posterior parts of the inferior-parietal lobule (IPL) and the frontal motor areas. OBJECTIVE/HYPOTHESIS This study investigates whether different intra-hemispheric parietal-motor interactions can be observed along the anterior-posterior axis of the IPL in the resting human brain. METHODS We use a twin coil transcranial magnetic stimulation technique to test intra-hemispheric interactions between three points adjacent to the intra-parietal sulcus (anterior, central, posterior) and the ipsilateral primary motor cortex (M1) at rest in both hemispheres. RESULTS We found that stimulation of the anterior IPL resulted in an inhibition of the ipsilateral M1 in both hemispheres. Stimulation of the central and posterior IPL resulted in a facilitatory effect on ipsilateral M1 in the left but not for the right hemisphere. Additionally we show that there is considerable inter-subject variability concerning the optimal parietal facilitatory and inhibitory position. CONCLUSIONS The IPL has distinct inhibitory and facilitatory connections to the ipsilateral M1. Whereas inhibitory connections are observed in both hemispheres, facilitatory connections are asymmetric. These parietal-motor networks may represent the basis for the functional differences between these regions in reaching and grasping tasks and mirror the functional asymmetry observed in the motor system. From a practical point of view, we note that the inter-subject variability means that future TMS studies of the parietal area might consider a hot-spot localization similar to the procedures commonly used for M1.


Journal of Neurophysiology | 2012

Timing-dependent modulation of the posterior parietal cortex–primary motor cortex pathway by sensorimotor training

Anke Karabanov; Seung-Hyun Jin; Atte Joutsen; Brach Poston; Joshua Aizen; Aviva Ellenstein; Mark Hallett

Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC-M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline.


European Journal of Neuroscience | 2012

The differential modulation of the ventral premotor-motor interaction during movement initiation is deficient in patients with focal hand dystonia.

Elise Houdayer; Sandra Beck; Anke Karabanov; Brach Poston; Mark Hallett

A major feature of focal hand dystonia (FHD) pathophysiology is the loss of inhibition. One inhibitory process, surround inhibition, for which the cortical mechanisms are still unknown, is abnormal in FHD. As the ventral premotor cortex (PMv) plays a key role in the sensorimotor processing involved in shaping finger movements and has many projections onto the primary motor cortex (M1), we hypothesized that the PMv–M1 connections might play a role in surround inhibition. A paired‐pulse transcranial magnetic stimulation paradigm was used in order to evaluate and compare the PMv–M1 interactions during different phases (rest, preparation and execution) of an index finger movement in patients with FHD and controls. A sub‐threshold conditioning pulse (80% resting motor threshold) was applied to the PMv at 6 ms before M1 stimulation. The right abductor pollicis brevis, a surround muscle, was the target muscle. In healthy controls, the results showed that PMv stimulation induced an ipsilateral ventral premotor–motor inhibition at rest. This cortico‐cortical interaction changed into an early facilitation (100 ms before movement onset) and turned back to inhibition 50 ms later. In patients with FHD, this PMv–M1 interaction and its modulation were absent. Our results show that, although the ipsilateral ventral premotor–motor inhibition does not play a key role in the genesis of surround inhibition, PMv has a dynamic influence on M1 excitability during the early steps of motor execution. The impaired cortico‐cortical interactions observed in patients with FHD might contribute, at least in part, to the abnormal motor command.


Journal of Neurophysiology | 2008

Implicit and Explicit Learning of Temporal Sequences Studied With the Process Dissociation Procedure

Anke Karabanov; Fredrik Ullén

We studied whether temporal sequences can be learned implicitly using a process dissociation procedure (PDP). Participants performed repeated serial recalls of sequential stimuli with a random ordinal structure and fixed temporal structure. Explicit knowledge was evaluated through verbal questions and PDP analysis of two generation tasks (inclusion and exclusion). Participants were divided into two groups: in the Ordinal group, stimulus presentation was visual and the participants were instructed to repeat the ordinal structure; in the Temporal+Ordinal group, stimulus presentation was audio-visual and the participants were instructed to repeat temporal and ordinal structure. We expected predominantly implicit learning in the Ordinal group and explicit learning in the Temporal+Ordinal group. This was supported by two findings. First, a significant difference between inclusion and exclusion performance was seen only in the Temporal+Ordinal group. Second, in both groups, a negative relation was found between the degree of improvement during serial recall and a measure of explicit knowledge in the generation tasks. This relation was independent of the final level of performance during serial recall. These findings suggest that distinct implicit and explicit systems may exist for learning of temporal sequences: implicit learning is gradual and gives rise to knowledge that is inaccessible to conscious control while the explicit system is fast and results in representations that can be used to control performance in inclusion and exclusion tasks.


PLOS ONE | 2015

Participation of the Classical Speech Areas in Auditory Long-Term Memory

Anke Karabanov; Rainer Paine; Chi-Chao Chao; Katrin Schulze; Brian H. Scott; Mark Hallett; Mortimer Mishkin

Accumulating evidence suggests that storing speech sounds requires transposing rapidly fluctuating sound waves into more easily encoded oromotor sequences. If so, then the classical speech areas in the caudalmost portion of the temporal gyrus (pSTG) and in the inferior frontal gyrus (IFG) may be critical for performing this acoustic-oromotor transposition. We tested this proposal by applying repetitive transcranial magnetic stimulation (rTMS) to each of these left-hemisphere loci, as well as to a nonspeech locus, while participants listened to pseudowords. After 5 minutes these stimuli were re-presented together with new ones in a recognition test. Compared to control-site stimulation, pSTG stimulation produced a highly significant increase in recognition error rate, without affecting reaction time. By contrast, IFG stimulation led only to a weak, non-significant, trend toward recognition memory impairment. Importantly, the impairment after pSTG stimulation was not due to interference with perception, since the same stimulation failed to affect pseudoword discrimination examined with short interstimulus intervals. Our findings suggest that pSTG is essential for transforming speech sounds into stored motor plans for reproducing the sound. Whether or not the IFG also plays a role in speech-sound recognition could not be determined from the present results.

Collaboration


Dive into the Anke Karabanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Hallett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Paine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chi-Chao Chao

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Cervenka

Stockholm County Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge