Anke Tönjes
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anke Tönjes.
Nature Genetics | 2010
Thorgeir E. Thorgeirsson; Daniel F. Gudbjartsson; Ida Surakka; Jacqueline M. Vink; Najaf Amin; Frank Geller; Patrick Sulem; Thorunn Rafnar; Tonu Esko; Stefan Walter; Christian Gieger; Rajesh Rawal; Massimo Mangino; Inga Prokopenko; Reedik Mägi; Kaisu Keskitalo; Iris H Gudjonsdottir; Solveig Gretarsdottir; Hreinn Stefansson; John R. Thompson; Yurii S. Aulchenko; Mari Nelis; Katja K. Aben; Martin den Heijer; Asger Dirksen; Haseem Ashraf; Nicole Soranzo; Ana M. Valdes; Claire J. Steves; André G. Uitterlinden
Smoking is a common risk factor for many diseases. We conducted genome-wide association meta-analyses for the number of cigarettes smoked per day (CPD) in smokers (n = 31,266) and smoking initiation (n = 46,481) using samples from the ENGAGE Consortium. In a second stage, we tested selected SNPs with in silico replication in the Tobacco and Genetics (TAG) and Glaxo Smith Kline (Ox-GSK) consortia cohorts (n = 45,691 smokers) and assessed some of those in a third sample of European ancestry (n = 9,040). Variants in three genomic regions associated with CPD (P < 5 × 10−8), including previously identified SNPs at 15q25 represented by rs1051730[A] (effect size = 0.80 CPD, P = 2.4 × 10−69), and SNPs at 19q13 and 8p11, represented by rs4105144[C] (effect size = 0.39 CPD, P = 2.2 × 10−12) and rs6474412-T (effect size = 0.29 CPD, P = 1.4 × 10−8), respectively. Among the genes at the two newly associated loci are genes encoding nicotine-metabolizing enzymes (CYP2A6 and CYP2B6) and nicotinic acetylcholine receptor subunits (CHRNB3 and CHRNA6), all of which have been highlighted in previous studies of smoking and nicotine dependence. Nominal associations with lung cancer were observed at both 8p11 (rs6474412[T], odds ratio (OR) = 1.09, P = 0.04) and 19q13 (rs4105144[C], OR = 1.12, P = 0.0006).
Diabetes | 2010
Erik Ingelsson; Claudia Langenberg; Marie-France Hivert; Inga Prokopenko; Valeriya Lyssenko; Josée Dupuis; Reedik Mägi; Stephen J. Sharp; Anne U. Jackson; Themistocles L. Assimes; Peter Shrader; Joshua W. Knowles; Björn Zethelius; Fahim Abbasi; Richard N. Bergman; Antje Bergmann; Christian Berne; Michael Boehnke; Lori L. Bonnycastle; Stefan R. Bornstein; Thomas A. Buchanan; Suzannah Bumpstead; Yvonne Böttcher; Peter S. Chines; Francis S. Collins; C Cooper; Elaine M. Dennison; Michael R. Erdos; Ele Ferrannini; Caroline S. Fox
OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
Diabetes | 2014
Antigone S. Dimas; Vasiliki Lagou; Adam Barker; Joshua W. Knowles; Reedik Mägi; Marie-France Hivert; Andrea Benazzo; Denis Rybin; Anne U. Jackson; Heather M. Stringham; Ci Song; Antje Fischer-Rosinsky; Trine Welløv Boesgaard; Niels Grarup; Fahim Abbasi; Themistocles L. Assimes; Ke Hao; Xia Yang; Cécile Lecoeur; Inês Barroso; Lori L. Bonnycastle; Yvonne Böttcher; Suzannah Bumpstead; Peter S. Chines; Michael R. Erdos; Jürgen Graessler; Peter Kovacs; Mario A. Morken; Felicity Payne; Alena Stančáková
Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
Diabetes Care | 2006
Anke Tönjes; Markus Scholz; Markus Loeffler; Michael Stumvoll
OBJECTIVE—The provariant of the Pro12Ala polymorphism in peroxisome proliferator–activated receptor (PPAR)γ has been identified as a risk allele for type 2 diabetes. The purpose of the present study was to reveal a significant association with pre-diabetic phenotypes in nondiabetic individuals based on a systematic meta-analysis of all available published evidence. RESEARCH DESIGN AND METHODS—We performed a classical meta-analysis of data from ∼32,000 nondiabetic subjects in 57 studies to assess the effect of the Pro12Ala polymorphism on pre-diabetic traits. RESULTS—In the global comparison, there were no differences in BMI, glucose, insulin, or homeostasis model assessment of insulin resistance between the Pro/Pro and X/Ala genotype. However, in the Caucasian subgroup, the X/Ala genotype was associated with significantly increased BMI. In the obese subgroup (BMI >30 kg/m2), fasting glucose (P = 0.041) and insulin resistance (by homeostasis model analysis) (P = 0.020) were significantly greater in the Pro/Pro group. In subjects with the homozygous Ala/Ala genotype, fasting insulin was significantly lower compared with the Pro/Pro genotype (P = 0.040, NAla/Ala = 154). CONCLUSIONS—Across all studies, the Pro12Ala polymorphism had no significant effect on diabetes-related traits. Only in selected subgroups, such as Caucasians and obese subjects, did we see an association of the Ala allele with greater BMI and greater insulin sensitivity. This demonstrates the importance for appropriate stratification of analyses by environmental or other genetic factors. Meta-analysis of Ala/Ala homozygotes more clearly demonstrated the association with greater insulin sensitivity of carriers of the Ala allele.
Nature | 2016
Iosif Lazaridis; Dani Nadel; Gary O. Rollefson; Deborah C. Merrett; Nadin Rohland; Swapan Mallick; Daniel Fernandes; Mario Novak; Beatriz Gamarra; Kendra Sirak; Sarah Connell; Kristin Stewardson; Eadaoin Harney; Qiaomei Fu; Gloria Gonzalez-Fortes; Eppie R. Jones; Songül Alpaslan Roodenberg; György Lengyel; Fanny Bocquentin; Boris Gasparian; Janet Monge; Michael C. Gregg; Vered Eshed; Ahuva-Sivan Mizrahi; Christopher Meiklejohn; F.A. Gerritsen; Luminita Bejenaru; Matthias Blüher; Archie Campbell; Gianpiero L. Cavalleri
We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.
PLOS Genetics | 2011
Michael A. Nalls; David Couper; Toshiko Tanaka; Frank J. A. van Rooij; Ming-Huei Chen; Albert V. Smith; Daniela Toniolo; Neil A. Zakai; Qiong Yang; Andreas Greinacher; Andrew R. Wood; Melissa Garcia; Paolo Gasparini; Yongmei Liu; Thomas Lumley; Aaron R. Folsom; Alex P. Reiner; Christian Gieger; Vasiliki Lagou; Janine F. Felix; Henry Völzke; Natalia Gouskova; Alessandro Biffi; Angela Döring; Uwe Völker; Sean Chong; Kerri L. Wiggins; Augusto Rendon; Abbas Dehghan; Matt Moore
White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds.
PLOS ONE | 2010
Anke Tönjes; Mathias Fasshauer; Jürgen Kratzsch; Michael Stumvoll; Matthias Blüher
Aim Altered adipokine serum concentrations early reflect impaired adipose tissue function in obese patients with type 2 diabetes (T2D). It is not entirely clear whether these adipokine alterations are already present in prediabetic states and so far there is no comprehensive adipokine panel available. Therefore, the aim of this study was to assess distinct adipokine profiles in patients with normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or T2D. Methods Based on 75 g oral glucose tolerance tests, 124 individuals were divided into groups of IFG (n = 35), IGT (n = 45), or NGT (n = 43). Furthermore, 56 subjects with T2D were included. Serum concentrations of adiponectin, chemerin, fetuin-A, leptin, interleukin (IL)-6, retinol-binding protein 4 (RBP4), monocyte chemoattractant protein (MCP)-1, vaspin, progranulin, and soluble leptin receptor (sOBR) were measured by ELISAs. Results Chemerin, progranulin, fetuin-A, and RBP4, IL-6, adiponectin and leptin serum concentrations were differentially regulated among the four investigated groups but only circulating chemerin was significantly different in patients with IGT compared to those with IFG. Compared to T2D the IFG subjects had higher serum chemerin, progranulin, fetuin-A and RBP4 levels which was not detectable in the comparison of the T2D and IGT group. Conclusion Alterations in adipokine serum concentrations are already detectable in prediabetic states, mainly for chemerin, and may reflect adipose tissue dysfunction as an early pathogenetic event in T2D development. In addition, distinct adipokine serum patterns in individuals with IFG and IGT suggest a specific role of adipose tissue in the pathogenesis of these prediabetic states.
Diabetes | 2007
Peter Kovacs; Michaela Geyer; Janin Berndt; Nora Klöting; Tim Graham; Yvonne Böttcher; Beate Enigk; Anke Tönjes; Dorit Schleinitz; Michael R. Schön; Barbara B. Kahn; Matthias Blüher; Michael Stumvoll
OBJECTIVE— Serum retinol binding protein 4 (RBP4) is a new liver- and adipocyte-derived signal that may contribute to insulin resistance. Therefore, the RBP4 gene represents a plausible candidate gene involved in susceptibility to type 2 diabetes. RESEARCH DESIGN AND METHODS— In this study, the RBP4 gene was sequenced in DNA samples from 48 nonrelated Caucasian subjects. Five novel and three known single nucleotide polymorphisms (SNPs) were identified. Furthermore, five recently reported SNPs were genotyped in 90 subjects. Six SNPs, representative of their linkage disequilibrium groups, were then genotyped in 934 diabetic and 716 nondiabetic subjects. RESULTS— A haplotype of six common SNPs (A-G-G-T-G-C) was significantly increased in 934 case subjects with type 2 diabetes compared with 537 healthy control subjects with normal glucose tolerance (P = 0.02; odds ratio 1.37 [95% CI 1.05–1.79]). Furthermore, in the cohort of 716 nondiabetic Caucasian subjects, carriers of the A-G-G-T-G-C haplotype had significantly higher mean fasting plasma insulin and 2-h plasma glucose than subjects without the haplotype. Two single SNPs (rs10882283 and rs10882273) were also associated with BMI, waist-to-hip ratio, and fasting plasma insulin, and several SNPs were associated with circulating free fatty acids (all adjusted P < 0.05). In addition, subjects carrying a previously reported diabetes-associated haplotype had significantly higher mRNA levels in visceral adipose tissue (adjusted P < 0.05) in a subgroup of nondiabetic subjects (n = 170) with measurements of RBP4 mRNA expression in visceral and subcutaneous fat depots. CONCLUSIONS— Our data indicate a role of RBP4 genetic variation in susceptibility to type 2 diabetes and insulin resistance, possibly through an effect on RBP4 expression.
Diabetologia | 2008
Nora Klöting; Dorit Schleinitz; Karen Ruschke; Janin Berndt; Mathias Fasshauer; Anke Tönjes; Michael R. Schön; Peter Kovacs; Michael Stumvoll; Matthias Blüher
Aims/hypothesisRecently, FTO was identified as a candidate gene contributing to both childhood and severe adult obesity. We tested the hypothesis that mRNA expression of FTO and/or of the neighbouring RPGRIP1L in adipose tissue correlates with measures of obesity and fat distribution. We also investigated whether the FTO obesity risk alleles might explain variability in FTO and RPGRIP1L mRNA expression.MethodsIn paired samples of visceral and subcutaneous adipose tissue from 55 lean and obese participants, we investigated whether FTO and RPGRIP1L mRNA expression is fat depot-specific, altered in obesity and related to measures of fat accumulation, insulin sensitivity and glucose metabolism. All participants were genotyped for the obesity-associated rs8050136 FTO variant.ResultsFTO mRNA expression was threefold higher in subcutaneous than in visceral adipose tissue. Subcutaneous FTO expression correlated with visceral FTO expression. FTO gene expression in both depots correlated with age and was negatively correlated to BMI and per cent body fat. FTO mRNA levels were not related to measures of insulin sensitivity and glucose metabolism. RPGRIP1L mRNA expression was 1.6-fold higher in visceral than in subcutaneous adipose tissue, but did not correlate with anthropometric and metabolic characteristics. There was no association between rs8050136 and FTO or RPGRIP1L mRNA expression in adipose tissue.Conclusions/interpretationExpression of adipose tissue FTO mRNA is fat depot-specific and negatively correlates with measures of obesity. However, the direction of this relationship still needs to be elucidated.
Human Molecular Genetics | 2011
Patrick Sulem; Daniel F. Gudbjartsson; Frank Geller; Inga Prokopenko; Bjarke Feenstra; Katja K. Aben; Barbara Franke; Martin den Heijer; Peter Kovacs; Michael Stumvoll; Reedik Mägi; Lisa R. Yanek; Lewis C. Becker; Heather A. Boyd; Simon N. Stacey; G. Bragi Walters; Adalbjorg Jonasdottir; Gudmar Thorleifsson; Hilma Holm; Sigurjon A. Gudjonsson; Thorunn Rafnar; Gyda Bjornsdottir; Diane M. Becker; Mads Melbye; Augustine Kong; Anke Tönjes; Thorgeir E. Thorgeirsson; Unnur Thorsteinsdottir; Lambertus A. Kiemeney; Kari Stefansson
Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), The Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10(-14)) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10(-11)). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers.