Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorit Schleinitz is active.

Publication


Featured researches published by Dorit Schleinitz.


Diabetes | 2007

Effects of Genetic Variation in the Human Retinol Binding Protein-4 Gene (RBP4) on Insulin Resistance and Fat Depot–Specific mRNA Expression

Peter Kovacs; Michaela Geyer; Janin Berndt; Nora Klöting; Tim Graham; Yvonne Böttcher; Beate Enigk; Anke Tönjes; Dorit Schleinitz; Michael R. Schön; Barbara B. Kahn; Matthias Blüher; Michael Stumvoll

OBJECTIVE— Serum retinol binding protein 4 (RBP4) is a new liver- and adipocyte-derived signal that may contribute to insulin resistance. Therefore, the RBP4 gene represents a plausible candidate gene involved in susceptibility to type 2 diabetes. RESEARCH DESIGN AND METHODS— In this study, the RBP4 gene was sequenced in DNA samples from 48 nonrelated Caucasian subjects. Five novel and three known single nucleotide polymorphisms (SNPs) were identified. Furthermore, five recently reported SNPs were genotyped in 90 subjects. Six SNPs, representative of their linkage disequilibrium groups, were then genotyped in 934 diabetic and 716 nondiabetic subjects. RESULTS— A haplotype of six common SNPs (A-G-G-T-G-C) was significantly increased in 934 case subjects with type 2 diabetes compared with 537 healthy control subjects with normal glucose tolerance (P = 0.02; odds ratio 1.37 [95% CI 1.05–1.79]). Furthermore, in the cohort of 716 nondiabetic Caucasian subjects, carriers of the A-G-G-T-G-C haplotype had significantly higher mean fasting plasma insulin and 2-h plasma glucose than subjects without the haplotype. Two single SNPs (rs10882283 and rs10882273) were also associated with BMI, waist-to-hip ratio, and fasting plasma insulin, and several SNPs were associated with circulating free fatty acids (all adjusted P < 0.05). In addition, subjects carrying a previously reported diabetes-associated haplotype had significantly higher mRNA levels in visceral adipose tissue (adjusted P < 0.05) in a subgroup of nondiabetic subjects (n = 170) with measurements of RBP4 mRNA expression in visceral and subcutaneous fat depots. CONCLUSIONS— Our data indicate a role of RBP4 genetic variation in susceptibility to type 2 diabetes and insulin resistance, possibly through an effect on RBP4 expression.


Diabetologia | 2008

Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans.

Nora Klöting; Dorit Schleinitz; Karen Ruschke; Janin Berndt; Mathias Fasshauer; Anke Tönjes; Michael R. Schön; Peter Kovacs; Michael Stumvoll; Matthias Blüher

Aims/hypothesisRecently, FTO was identified as a candidate gene contributing to both childhood and severe adult obesity. We tested the hypothesis that mRNA expression of FTO and/or of the neighbouring RPGRIP1L in adipose tissue correlates with measures of obesity and fat distribution. We also investigated whether the FTO obesity risk alleles might explain variability in FTO and RPGRIP1L mRNA expression.MethodsIn paired samples of visceral and subcutaneous adipose tissue from 55 lean and obese participants, we investigated whether FTO and RPGRIP1L mRNA expression is fat depot-specific, altered in obesity and related to measures of fat accumulation, insulin sensitivity and glucose metabolism. All participants were genotyped for the obesity-associated rs8050136 FTO variant.ResultsFTO mRNA expression was threefold higher in subcutaneous than in visceral adipose tissue. Subcutaneous FTO expression correlated with visceral FTO expression. FTO gene expression in both depots correlated with age and was negatively correlated to BMI and per cent body fat. FTO mRNA levels were not related to measures of insulin sensitivity and glucose metabolism. RPGRIP1L mRNA expression was 1.6-fold higher in visceral than in subcutaneous adipose tissue, but did not correlate with anthropometric and metabolic characteristics. There was no association between rs8050136 and FTO or RPGRIP1L mRNA expression in adipose tissue.Conclusions/interpretationExpression of adipose tissue FTO mRNA is fat depot-specific and negatively correlates with measures of obesity. However, the direction of this relationship still needs to be elucidated.


European Journal of Human Genetics | 2010

Association of FTO variants with BMI and fat mass in the self-contained population of Sorbs in Germany

Anke Tönjes; Eleftheria Zeggini; Peter Kovacs; Yvonne Böttcher; Dorit Schleinitz; Kerstin Dietrich; Andrew P. Morris; Beate Enigk; Nigel W. Rayner; Moritz Koriath; Markus Eszlinger; Anu Kemppinen; Inga Prokopenko; Katrin Hoffmann; Daniel Teupser; Joachim Thiery; Knut Krohn; Mark McCarthy; Michael Stumvoll

The association between common variants in the FTO gene with weight, adiposity and body mass index (BMI) has now been widely replicated. Although the causal variant has yet to be identified, it most likely maps within a 47 kb region of intron 1 of FTO. We performed a genome-wide association study in the Sorbian population and evaluated the relationships between FTO variants and BMI and fat mass in this isolate of Slavonic origin resident in Germany. In a sample of 948 Sorbs, we could replicate the earlier reported associations of intron 1 SNPs with BMI (eg, P-value=0.003, β=0.02 for rs8050136). However, using genome-wide association data, we also detected a second independent signal mapping to a region in intron 2/3 about 40–60 kb away from the originally reported SNPs (eg, for rs17818902 association with BMI P-value=0.0006, β=−0.03 and with fat mass P-value=0.0018, β=−0.079). Both signals remain independently associated in the conditioned analyses. In conclusion, we extend the evidence that FTO variants are associated with BMI by putatively identifying a second susceptibility allele independent of that described earlier. Although further statistical analysis of these findings is hampered by the finite size of the Sorbian isolate, these findings should encourage other groups to seek alternative susceptibility variants within FTO (and other established susceptibility loci) using the opportunities afforded by analyses in populations with divergent mutational and/or demographic histories.


Human Molecular Genetics | 2009

Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs

Anke Tönjes; Moritz Koriath; Dorit Schleinitz; Kerstin Dietrich; Yvonne Böttcher; Nigel W. Rayner; Peter Almgren; Beate Enigk; Olaf Richter; Silvio Rohm; Antje Fischer-Rosinsky; Andreas F.H. Pfeiffer; Katrin Hoffmann; Knut Krohn; Gabriela Aust; Joachim Spranger; Leif Groop; Matthias Blüher; Peter Kovacs; Michael Stumvoll

Recently, associations of several common genetic variants with height have been reported in different populations. We attempted to identify further variants associated with adult height in a self-contained population (the Sorbs in Eastern Germany) as discovery set. We performed a genome wide association study (GWAS) (approximately 390,000 genetic polymorphisms, Affymetrix gene arrays) on adult height in 929 Sorbian individuals. Subsequently, the best SNPs (P < 0.001) were taken forward to a meta-analysis together with two independent cohorts [Diabetes Genetics Initiative, British 1958 Birth Cohort, (58BC, publicly available)]. Furthermore, we genotyped our best signal for replication in two additional German cohorts (Leipzig, n = 1044 and Berlin, n = 1728). In the primary Sorbian GWAS, we identified 5 loci with a P-value < 10(-5) and 455 SNPs with P-value < 0.001. In the meta-analysis on those 455 SNPs, only two variants in GPR133 (rs1569019 and rs1976930; in LD with each other) retained a P-value at or below 10(-6) and were associated with height in the three cohorts individually. Upon replication, the SNP rs1569019 showed significant effects on height in the Leipzig cohort (P = 0.004, beta = 1.166) and in 577 men of the Berlin cohort (P = 0.049, beta = 1.127) though not in women. The combined analysis of all five cohorts (n = 6,687) resulted in a P-value of 4.7 x 10(-8) (beta = 0.949). In conclusion, our GWAS suggests novel loci influencing height. In view of the robust replication in five different cohorts, we propose GPR133 to be a novel gene associated with adult height.


Diabetes | 2009

Adipose Tissue Expression and Genetic Variants of the Bone Morphogenetic Protein Receptor 1A Gene (BMPR1A) Are Associated With Human Obesity

Yvonne Böttcher; Hanne Unbehauen; Nora Klöting; Karen Ruschke; Antje Körner; Dorit Schleinitz; Anke Tönjes; Beate Enigk; Sara Wolf; Kerstin Dietrich; Moritz Koriath; Gerhard Harry Scholz; Yu-Hua Tseng; Arne Dietrich; Michael R. Schön; Wieland Kiess; Michael Stumvoll; Matthias Blüher; Peter Kovacs

OBJECTIVE Members of the family of bone morphogenetic proteins (BMPs) are important regulators of adipogenesis. We examined the role of the BMP receptor 1A gene (BMPR1A) in the pathophysiology of human obesity. RESEARCH DESIGN AND METHODS We measured BMPR1A mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 297 subjects and sequenced the BMPR1A in 48 nonrelated white subjects. Twenty-one representative variants including HapMap tagging single nucleotide polymorphisms (SNPs) were then genotyped for association studies in German whites (n = 1,907). For replication analyses, we used a population of Sorbs from Germany (n = 900) and German childhood cohorts (n = 1,029 schoolchildren and 270 obese children). RESULTS mRNA expression of the BMPR1A was significantly increased in both visceral and subcutaneous adipose tissue of overweight and obese subjects compared with lean subjects (P < 0.05). In a case-control study, four SNPs (rs7095025, rs11202222, rs10788528, and rs7922846) were nominally associated with obesity (adjusted P < 0.05). For three SNPs (rs7095025, rs11202222, and rs10788528), the association with obesity was confirmed in the independent cohort of Sorbs (adjusted P < 0.005). Consistent with this, BMPR1A SNPs were nominally associated with obesity-related quantitative traits in nondiabetic subjects in both adult cohorts. Furthermore, homozygous carriers of the obesity risk alleles had higher BMPR1A mRNA expression in fat than noncarriers. CONCLUSIONS Our data suggest that genetic variation in the BMPR1A may play a role in the pathophysiology of human obesity, possibly mediated through effects on mRNA expression.


Diabetologia | 2014

The genetics of fat distribution

Dorit Schleinitz; Yvonne Böttcher; Matthias Blüher; Peter Kovacs

Fat stored in visceral depots makes obese individuals more prone to complications than subcutaneous fat. There is good evidence that body fat distribution (FD) is controlled by genetic factors. WHR, a surrogate measure of FD, shows significant heritability of up to ∼60%, even after adjusting for BMI. Genetic variants have been linked to various forms of altered FD such as lipodystrophies; however, the polygenic background of visceral obesity has only been sparsely investigated in the past. Recent genome-wide association studies (GWAS) for measures of FD revealed numerous loci harbouring genes potentially regulating FD. In addition, genes with fat depot-specific expression patterns (in particular subcutaneous vs visceral adipose tissue) provide plausible candidate genes involved in the regulation of FD. Many of these genes are differentially expressed in various fat compartments and correlate with obesity-related traits, thus further supporting their role as potential mediators of metabolic alterations associated with a distinct FD. Finally, developmental genes may at a very early stage determine specific FD in later life. Indeed, genes such as TBX15 not only manifest differential expression in various fat depots, but also correlate with obesity and related traits. Moreover, recent GWAS identified several polymorphisms in developmental genes (including TBX15, HOXC13, RSPO3 and CPEB4) strongly associated with FD. More accurate methods, including cardiometabolic imaging, for assessment of FD are needed to promote our understanding in this field, where the main focus is now to unravel the yet unknown biological function of these novel ‘fat distribution genes’.


Methods of Molecular Biology | 2011

Targeted SNP Genotyping Using the TaqMan® Assay

Dorit Schleinitz; Johanna K. DiStefano; Peter Kovacs

More than 99% of genomic DNA sequence is identical among humans, and not surprisingly, slight variations in sequence can often produce a major effect on phenotype. Sequence variants may also mediate the manner in which humans are susceptible to disease or respond to environmental factors such as bacteria, viruses, toxins, chemicals, drugs, and therapeutic interventions. Single-nucleotide polymorphisms (SNPs) are DNA sequence variations that occur when a single base in the genome sequence can be represented by at least two different nucleotides. In the last decade, numerous SNPs have been identified that explain, at least partially, the genetic architecture of complex diseases such as cancer, diabetes, vascular complications, some forms of mental illness, and a multitude of other disorders. Disease-related SNPs are commonly identified through candidate gene approaches, or more recently, through genome-wide association studies. In either case, findings of association require verification in independent, population-based, study samples, usually consisting of several hundreds/thousands of individuals. A convenient technique to genotype a moderate number of markers in this kind of study is available with the TaqMan® platform (Applied Biosystems; Foster City, CA), which utilizes polymerase chain reaction amplification and allelic discrimination to easily and efficiently generate genotype data in a cost-effective way. Here, we introduce and describe this commonly used technique and include protocols that can be directly used in laboratories aiming to perform moderate- to large-scale genotyping studies.


PLOS ONE | 2011

Genetic and Evolutionary Analyses of the Human Bone Morphogenetic Protein Receptor 2 (BMPR2) in the Pathophysiology of Obesity

Dorit Schleinitz; Nora Klöting; Yvonne Böttcher; Sara Wolf; Kerstin Dietrich; Anke Tönjes; Jana Breitfeld; Beate Enigk; Jan Halbritter; Antje Körner; Michael R. Schön; Jost Jenkner; Yu-Hua Tseng; Tobias Lohmann; Miriam Dreβler; Michael Stumvoll; Matthias Blüher; Peter Kovacs

Objective Human bone morphogenetic protein receptor 2 (BMPR2) is essential for BMP signalling and may be involved in the regulation of adipogenesis. The BMPR2 locus has been suggested as target of recent selection in human populations. We hypothesized that BMPR2 might have a role in the pathophysiology of obesity. Research Design and Methods Evolutionary analyses (dN/dS, Fst, iHS) were conducted in vertebrates and human populations. BMPR2 mRNA expression was measured in 190 paired samples of visceral and subcutaneous adipose tissue. The gene was sequenced in 48 DNA samples. Nine representative single nucleotide polymorphisms (SNPs) were genotyped for subsequent association studies on quantitative traits related to obesity in 1830 German Caucasians. An independent cohort of 925 Sorbs was used for replication. Finally, relation of genotypes to mRNA in fat was examined. Results The evolutionary analyses indicated signatures of selection on the BMPR2 locus. BMPR2 mRNA expression was significantly increased both in visceral and subcutaneous adipose tissue of 37 overweight (BMI>25 and <30 kg/m2) and 80 obese (BMI>30 kg/m2) compared with 44 lean subjects (BMI<25 kg/m2) (P<0.001). In a case-control study including lean and obese subjects, two intronic SNPs (rs6717924, rs13426118) were associated with obesity (adjusted P<0.05). Combined analyses including the initial cohort and the Sorbs confirmed a consistent effect for rs6717924 (combined P = 0.01) on obesity. Moreover, rs6717924 was associated with higher BMPR2 mRNA expression in visceral adipose tissue. Conclusion Combined BMPR2 genotype-phenotype-mRNA expression data as well as evolutionary aspects suggest a role of BMPR2 in the pathophysiology of obesity.


International Journal of Obesity | 2013

Genetic variation in the vaspin gene affects circulating serum vaspin concentrations

J Breitfeld; Anke Tönjes; Y Böttcher; Dorit Schleinitz; N Wiele; C Marzi; C Brockhaus; W Rathmann; C Huth; H Grallert; T Illig; Matthias Blüher; Peter Kovacs; Michael Stumvoll

Objective:Visceral adipose tissue-derived serine protease inhibitor (vaspin) is an adipokine potentially linking obesity, insulin resistance and type 2 diabetes. Here, we searched for genetic determinants that could explain the variability in serum vaspin concentrations.Research Design and Methods:First, we conducted a genome-wide association study (GWAS) for serum vaspin in the Sorbs cohort (N=826). Subsequently, 26 single-nucleotide polymorphisms (SNPs) covering genetic variation in the vaspin locus were genotyped in the Sorbs. In addition, we measured serum vaspin concentrations in 1806 samples from Augsburg/the Cooperative Health Research in the Region of Augsburg (KORA) for replication of the association signals. Finally, we conducted association analyses of vaspin SNPs with metabolic traits in the Sorbs (N=1013), KORA (N=1813) and a further cohort from Germany (Leipzig: N=1857).Results:Six SNPs mapping between serpinA1 and serpinA4, including the vaspin locus, on chromosome 14 reached P-values ⩽10−8 in the GWAS in the Sorbs. The fine mapping of variants within the vaspin locus in the Sorbs and subsequent replication in the KORA sample revealed several SNPs significantly associated with serum vaspin concentrations reaching P-values of up to 10−35. However, no significant association with type 2 diabetes or related traits was found in either cohort after the Bonferroni correction for multiple comparisons.Conclusion:Our data show that the variability in serum vaspin concentrations might be explained by its genetic variants.


International Journal of Obesity | 2014

Fat depot-specific mRNA expression of novel loci associated with waist–hip ratio

Dorit Schleinitz; Nora Klöting; Cecilia M. Lindgren; J Breitfeld; Andrea Dietrich; M R Schön; T Lohmann; M Dreßler; Michael Stumvoll; Mark I. McCarthy; Matthias Blüher; Peter Kovacs

Objective:We hypothesized that genes within recently identified loci associated with waist–hip ratio (WHR) exhibit fat depot-specific mRNA expression, which correlates with obesity-related traits.Methods:Adipose tissue (AT) mRNA expression of 6 genes (TBX15/WARS2, STAB1, PIGC, ZNRF3 and GRB14) within these loci showing coincident cis-expression quantitative trait loci was measured in 222 paired samples of human visceral (vis) and subcutaneous (sc) AT. The relationship of mRNA expression levels with obesity-related quantitative traits was assessed by Pearsons correlation analyses. Multivariate linear relationships were assessed by generalized linear regression models.Results:Whereas only PIGC, ZNFR3 and STAB1 mRNA expression in sc AT correlated nominally with WHR (P<0.05, adjusted for age and sex), mRNA expression of all studied genes in at least one of the fat depots correlated significantly with vis and/or sc fat area (P ranging from 0.05 to 4.0 × 106, adjusted for age and sex). Consistently, the transcript levels of WARS, PIGC and GRB14 were nominally associated with body mass index (BMI) (P ranging from 0.02 to 9.2 × 105, adjusted for age and sex). Moreover, independent of sex, obesity and diabetes status, differential expression between vis and sc AT was observed for all tested genes (P<0.01). Finally, the rs10195252 T-allele was nominally associated with increased GRB14 sc mRNA expression (P=0.025 after adjusting for age, sex and BMI).Conclusions:Our data including the inter-depot variability of mRNA expression suggests that genes within the WHR-associated loci might be involved in the regulation of fat distribution.

Collaboration


Dive into the Dorit Schleinitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge