Anke Zieseniss
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anke Zieseniss.
Circulation Research | 2011
Malte Tiburcy; Michael Didié; Oliver Boy; Peter Christalla; Stephan Döker; Hiroshi Naito; Bijoy Chandapillai Karikkineth; Ali El-Armouche; Michael Grimm; Monika Nose; Thomas Eschenhagen; Anke Zieseniss; Doerthe M. Katschinski; Nazha Hamdani; Wolfgang A. Linke; Xiaoke Yin; Manuel Mayr; Wolfram-Hubertus Zimmermann
Rationale: Cardiac tissue engineering should provide “realistic” in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth. Objective: To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation as well as (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth. Methods and Results: We generated EHTs from neonatal rat cardiomyocytes and compared morphological and molecular properties of EHT and native myocardium from fetal, neonatal, and adult rats. We made the following key observations: cardiomyocytes in EHT (1) gained a high level of binucleation in the absence of notable cytokinesis, (2) regained a rod-shape and anisotropic sarcomere organization, (3) demonstrated a fetal-to-adult gene expression pattern, and (4) responded to distinct hypertrophic stimuli with concentric or eccentric hypertrophy and reexpression of fetal genes. The process of terminal differentiation and maturation (culture days 7–12) was preceded by a tissue consolidation phase (culture days 0–7) with substantial cardiomyocyte apoptosis and dynamic extracellular matrix restructuring. Conclusions: This study documents the propensity of immature cardiomyocytes to terminally differentiate and mature in EHT in a remarkably organotypic manner. It moreover provides the rationale for the utility of the EHT technology as a methodological bridge between 2D cell culture and animal models.
Genes & Development | 2012
Laura T. Donlin; Christian Andresen; Steffen Just; Eugene Rudensky; Christopher T. Pappas; Martina Krüger; Erica Y. Jacobs; Andreas Unger; Anke Zieseniss; Marc Werner Dobenecker; Tobias Voelkel; Brian T. Chait; Carol C. Gregorio; Wolfgang Rottbauer; Alexander Tarakhovsky; Wolfgang A. Linke
Protein lysine methylation is one of the most widespread post-translational modifications in the nuclei of eukaryotic cells. Methylated lysines on histones and nonhistone proteins promote the formation of protein complexes that control gene expression and DNA replication and repair. In the cytoplasm, however, the role of lysine methylation in protein complex formation is not well established. Here we report that the cytoplasmic protein chaperone Hsp90 is methylated by the lysine methyltransferase Smyd2 in various cell types. In muscle, Hsp90 methylation contributes to the formation of a protein complex containing Smyd2, Hsp90, and the sarcomeric protein titin. Deficiency in Smyd2 results in the loss of Hsp90 methylation, impaired titin stability, and altered muscle function. Collectively, our data reveal a cytoplasmic protein network that employs lysine methylation for the maintenance and function of skeletal muscle.
Trends in Cell Biology | 2011
Christopher T. Pappas; Katherine T. Bliss; Anke Zieseniss; Carol C. Gregorio
Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.
Journal of Biological Chemistry | 2012
Anna Raskin; Stephan Lange; Katherine Banares; Robert C. Lyon; Anke Zieseniss; Leonard K. Lee; Katrina Go Yamazaki; Henk Granzier; Carol C. Gregorio; Andrew D. McCulloch; Jeffrey H. Omens; Farah Sheikh
Background: Titin is critical for cardiac muscle function; however, limited knowledge exists of mechanisms important for its regulation. Results: A four-and-a-half LIM domain protein-1/extracellular signal-regulated kinase-2-associated complex modulates titin-N2B levels, phosphorylation, and mechanics. Conclusion: We reveal new mechanisms underlying titin mechano-signaling. Significance: We advance our understanding of how titin-associated complexes/mutations can impact cardiac muscle function and disease. Understanding mechanisms underlying titin regulation in cardiac muscle function is of critical importance given recent compelling evidence that highlight titin mutations as major determinants of human cardiomyopathy. We previously identified a cardiac biomechanical stress-regulated complex at the cardiac-specific N2B region of titin that includes four-and-a-half LIM domain protein-1 (Fhl1) and components of the mitogen-activated protein signaling cascade, which impacted muscle compliance in Fhl1 knock-out cardiac muscle. However, direct regulation of these molecular components in mediating titin N2B function remained unresolved. Here we identify Fhl1 as a novel negative regulator of titin N2B levels and phosphorylation-mediated mechanics. We specifically identify titin N2B as a novel substrate of extracellular signal regulated-kinase-2 (Erk2) and demonstrate that Fhl1 directly interferes with Erk2-mediated titin-N2B phosphorylation. We highlight the critical region in titin-N2B that interacts with Fhl1 and residues that are dependent on Erk2-mediated phosphorylation in situ. We also propose a potential mechanism for a known titin-N2B cardiomyopathy-causing mutation that involves this regulatory complex. These studies shed light on a novel mechanism regulating titin-N2B mechano-signaling as well as suggest that dysfunction of these pathways could be important in cardiac disease states affecting muscle compliance.
Journal of Biological Chemistry | 2011
Marion Hölscher; Monique Silter; Sabine Krull; Melanie von Ahlen; Amke R. Hesse; Peter Schwartz; Ben Wielockx; Georg Breier; Dörthe M. Katschinski; Anke Zieseniss
Prolylhydroxylase domain proteins (PHD) are cellular oxygen-sensing molecules that regulate the stability of the α-subunit of the transcription factor hypoxia inducible factor (HIF)-1. HIF-1 affects cardiac development as well as adaptation of the heart toward increased pressure overload or myocardial infarction. We have disrupted PHD2 in cardiomyocytes (cPhd −/−) using Phd2flox/flox mice in combination with MLCvCre mice, which resulted in HIF-1α stabilization and activation of HIF target genes in the heart. Although cPhd2−/− mice showed no gross abnormalities in cardiac filament structure or function, we observed a significant increased cardiac capillary area in those mice. cPhd2 −/− mice did not respond differently to increased mechanical load by transverse aortic constriction compared with their wild-type (wt) littermates. After ligation of the left anterior descending artery, however, the area at risk and area of necrosis were significantly smaller in the cPhd2−/− mice compared with Phd2 wt mice in line with the described pivotal role of HIF-1α for tissue protection in case of myocardial infarction. This correlated with a decreased number of apoptotic cells in the infarcted myocardium in the cPhd2−/− mice and significantly improved cardiac function 3 weeks after myocardial infarction.
Cardiovascular Research | 2012
Marion Hölscher; Katrin Schäfer; Sabine Krull; Katja Farhat; Amke R. Hesse; Monique Silter; Yun Lin; Bernd J. Pichler; Patricia A. Thistlethwaite; Ali El-Armouche; Lars S. Maier; Dörthe M. Katschinski; Anke Zieseniss
AIMS The hypoxia-inducible factor-1 (HIF-1) is the master modulator of hypoxic gene expression. The effects of chronically stabilized cardiac HIF-1α and its role in the diseased heart are not precisely known. The aims of this study were as follows: (i) to elucidate consequences of HIF-1α stabilization in the heart; (ii) to analyse long-term effects of HIF-1α stabilization with ageing and the ability of the HIF-1α overexpressing hearts to respond to increased mechanical load; and (iii) to analyse HIF-1α protein levels in failing heart samples. METHODS AND RESULTS In a cardiac-specific HIF-1α transgenic mouse model, constitutive expression of HIF-1α leads to changes in capillary area and shifts the cardiac metabolism towards glycolysis with a net increase in glucose uptake. Furthermore, Ca(2+) handling is altered, with increased Ca(2)(+) transients and faster intracellular [Ca(2+)] decline. These changes are associated with decreased expression of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a but elevated phosphorylation of phospholamban. HIF-1α transgenic mice subjected to transverse aortic constriction exhibited profound cardiac decompensation. Moreover, cardiomyopathy was also seen in ageing transgenic mice. In parallel, we found an increased stabilization of HIF-1α in heart samples of patients with end-stage heart failure. CONCLUSION Changes induced with transgenic cardiac HIF-1α possibly mediate beneficial effects in the short term; however, with increased mechanical load and ageing they become detrimental for cardiac function. Together with the finding of increased HIF-1α protein levels in samples from human patients with cardiomyopathy, these data indicate that chronic HIF-1α stabilization drives autonomous pathways that add to disease progression.
Journal of Biological Chemistry | 2010
Sabine Vogel; Marieke Wottawa; Katja Farhat; Anke Zieseniss; Moritz Schnelle; Sinja Le‐Huu; Melanie von Ahlen; Cordula R. Malz; Gieri Camenisch; Doerthe M. Katschinski
Cells are responding to hypoxia via prolyl-4-hydroxylase domain (PHD) enzymes, which are responsible for oxygen-dependent hydroxylation of the hypoxia-inducible factor (HIF)-1α subunit. To gain further insight into PHD function, we generated knockdown cell models for the PHD2 isoform, which is the main isoform regulating HIF-1α hydroxylation and thus stability in normoxia. Induction of a PHD2 knockdown in tetracycline-inducible HeLa PHD2 knockdown cells resulted in increased F-actin formation as detected by phalloidin staining. A similar effect could be observed in the stably transfected PHD2 knockdown cell clones 1B6 and 3B7. F-actin is at least in part responsible for shaping cell morphology as well as regulating cell migration. Cell migration was impaired significantly as a consequence of PHD2 knockdown in a scratch assay. Mechanistically, PHD2 knockdown resulted in activation of the RhoA (Ras homolog gene family member A)/Rho-associated kinase pathway with subsequent phosphorylation of cofilin. Because cofilin phosphorylation impairs its actin-severing function, this may explain the F-actin phenotype, thereby providing a functional link between PHD2-dependent signaling and cell motility.
PLOS ONE | 2013
Melanie Vogler; Sabine Vogel; Sabine Krull; Katja Farhat; Pia Leisering; Susanne Lutz; Christina M. Wuertz; Dörthe M. Katschinski; Anke Zieseniss
Cells can adapt to hypoxia by various mechanisms. Yet, hypoxia-induced effects on the cytoskeleton-based cell architecture and functions are largely unknown. Here we present a comprehensive analysis of the architecture and function of L929 fibroblasts under hypoxic conditions (1% O2). Cells cultivated in hypoxia showed striking morphological differences as compared to cells cultivated under normoxic conditions (20% O2). These changes include an enlargement of cell area and volume, increased numbers of focal contacts and loss of cell polarization. Furthermore the β- and γ-actin distribution is greatly altered. These hypoxic adjustments are associated with enhanced cell spreading and a decline of cell motility in wound closure and single cell motility assays. As the hypoxia-inducible factor-1α (HIF-1α) is stabilised in hypoxia and plays a pivotal role in the transcriptional response to changes in oxygen availability we used an shRNA-approach to examine the role of HIF-1α in cytoskeleton-related architecture and functions. We show that the observed increase in cell area, actin filament rearrangement, decrease of single cell migration in hypoxia and the maintenance of p-cofilin levels is dependent on HIF-1α stabilisation.
Pflügers Archiv: European Journal of Physiology | 2015
Melanie Vogler; Anke Zieseniss; Amke R. Hesse; Elif Levent; Malte Tiburcy; Eva Heinze; Nicolai Burzlaff; Gunnar Schley; Kai-Uwe Eckardt; Carsten Willam; Dörthe M. Katschinski
Several genetically modified mouse models implicated that prolyl-4-hydroxylase domain (PHD) enzymes are critical mediators for protecting tissues from an ischemic insult including myocardial infarction by affecting the stability and activation of hypoxia-inducible factor (HIF)-1 and HIF-2. Thus, the current efforts to develop small-molecule PHD inhibitors open a new therapeutic option for myocardial tissue protection during ischemia. Therefore, we aimed to investigate the applicability and efficacy of pharmacological HIFα stabilization by a small-molecule PHD inhibitor in the heart. We tested for protective effects in the acute phase of myocardial infarction after pre- or post-conditional application of the inhibitor. Application of the specific PHD inhibitor 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate (ICA) resulted in HIF-1α and HIF-2α accumulation in heart muscle cells in vitro and in vivo. The rapid and robust responsiveness of cardiac tissue towards ICA was further confirmed by induction of the known HIF target genes heme oxygenase-1 and PHD3. Pre- and post-conditional treatment of mice undergoing myocardial infarction resulted in a significantly smaller infarct size. Tissue protection from ischemia after pre- or post-conditional ICA treatment demonstrates that there is a therapeutic time window for the application of the PHD inhibitor (PHI) post-myocardial infarction, which might be exploited for acute medical interventions.
Cell and Tissue Research | 2007
Anke Zieseniss; Ulrich Schroeder; Sabine Buchmeier; Cora-Ann Schoenenberger; Joop van den Heuvel; Brigitte M. Jockusch; Susanne Illenberger
Raver1, a ubiquitously expressed protein, was originally identified as a ligand for metavinculin, the muscle-specific isoform of the microfilament-associated protein vinculin. The protein resides primarily in the nucleus, where it colocalises and may interact with polypyrimidine-tract-binding protein, which is involved in alternative splicing processes. During skeletal muscle differentiation, raver1 translocates to the cytoplasm and eventually targets the Z-line of sarcomeres. Here, it colocalises with metavinculin, vinculin and alpha-actinin, all of which have biochemically been identified as raver1 ligands. To obtain more information about the potential role of raver1 in muscle structure and function, we have investigated its distribution and fine localisation in mouse striated and smooth muscle, by using three monoclonal antibodies that recognise epitopes in different regions of the raver1 protein. Our immunofluorescence and immunoelectron-microscopic results indicate that the cytoplasmic accumulation of raver1 is not confined to skeletal muscle but also occurs in heart and smooth muscle. Unlike vinculin and metavinculin, cytoplasmic raver1 is not restricted to costameres but additionally represents an integral part of the sarcomere. In isolated myofibrils and in ultrathin sections of skeletal muscle, raver1 has been found concentrated at the I-Z-I band. A minor fraction of raver1 is present in the nuclei of all three types of muscle. These data indicate that, during muscle differentiation, raver1 might link gene expression with structural functions of the contractile machinery of muscle.