Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann-Christin Lindås is active.

Publication


Featured researches published by Ann-Christin Lindås.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A unique cell division machinery in the Archaea.

Ann-Christin Lindås; Erik A. Karlsson; Maria T. Lindgren; Thijs J. G. Ettema; Rolf Bernander

In contrast to the cell division machineries of bacteria, euryarchaea, and eukaryotes, no division components have been identified in the second main archaeal phylum, Crenarchaeota. Here, we demonstrate that a three-gene operon, cdv, in the crenarchaeon Sulfolobus acidocaldarius, forms part of a unique cell division machinery. The operon is induced at the onset of genome segregation and division, and the Cdv proteins then polymerize between segregating nucleoids and persist throughout cell division, forming a successively smaller structure during constriction. The cdv operon is dramatically down-regulated after UV irradiation, indicating division inhibition in response to DNA damage, reminiscent of eukaryotic checkpoint systems. The cdv genes exhibit a complementary phylogenetic range relative to FtsZ-based archaeal division systems such that, in most archaeal lineages, either one or the other system is present. Two of the Cdv proteins, CdvB and CdvC, display homology to components of the eukaryotic ESCRT-III sorting complex involved in budding of luminal vesicles and HIV-1 virion release, suggesting mechanistic similarities and a common evolutionary origin.


Molecular Microbiology | 2011

An actin-based cytoskeleton in archaea

Thijs J. G. Ettema; Ann-Christin Lindås; Rolf Bernander

In eukaryotic and bacterial cells, spatial organization is dependent upon cytoskeletal filaments. Actin is a main eukaryotic cytoskeletal element, involved in key processes such as cell shape determination, mechanical force generation and cytokinesis. We describe an archaeal cytoskeleton which forms helical structures within Pyrobaculum calidifontis cells, as shown by in situ immunostaining. The core components include an archaeal actin homologue, Crenactin, closely related to the eukaryotic counterpart. The crenactin gene belongs to a conserved gene cluster denoted Arcade (actin‐related cytoskeleton in Archaea involved in shape determination). The phylogenetic distribution of arcade genes is restricted to the crenarchaeal Thermoproteales lineage, and to Korarchaeota, and correlates with rod‐shaped and filamentous cell morphologies. Whereas Arcadin‐1, ‐3 and ‐4 form helical structures, suggesting cytoskeleton‐associated functions, Arcadin‐2 was found to be localized between segregated nucleoids in a cell subpopulation, in agreement with possible involvement in cytokinesis. The results support a crenarchaeal origin of the eukaryotic actin cytoskeleton and, as such, have implications for theories concerning the origin of the eukaryotic cell.


Nature Reviews Microbiology | 2013

The cell cycle of archaea

Ann-Christin Lindås; Rolf Bernander

Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.


Molecular & Cellular Proteomics | 2013

Archaeal Signal Transduction: Impact of Protein Phosphatase Deletions on Cell Size, Motility, and Energy Metabolism in Sulfolobus acidocaldarius

Julia Reimann; Dominik Esser; Alvaro Orell; Fabian Amman; Trong Khoa Pham; Josselin Noirel; Ann-Christin Lindås; Rolf Bernander; Phillip C. Wright; Bettina Siebers; Sonja-Verena Albers

In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.


Acta Crystallographica Section D-biological Crystallography | 2014

Structure of crenactin, an archaeal actin homologue active at 90°C

Ann-Christin Lindås; Maksymilian Chruszcz; Rolf Bernander; Karin Valegård

The crystal structure of the archaeal actin, crenactin, from the rod-shaped hyperthermophilic (optimal growth at 90°C) crenarchaeon Pyrobaculum calidifontis is reported at 3.35 Å resolution. Despite low amino-acid sequence identity, the three-dimensional structure of the protein monomer is highly similar to those of eukaryotic actin and the bacterial MreB protein. Crenactin-specific features are also evident, as well as elements that are shared between crenactin and eukaryotic actin but are not found in MreB. In the crystal, crenactin monomers form right-handed helices, demonstrating that the protein is capable of forming filament-like structures. Monomer interactions in the helix, as well as interactions between crenactin and ADP in the nucleotide-binding pocket, are resolved at the atomic level and compared with those of actin and MreB. The results provide insights into the structural and functional properties of a heat-stable archaeal actin and contribute to the understanding of the evolution of actin-family proteins in the three domains of life.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Archaeal actin from a hyperthermophile forms a single-stranded filament

Tatjana Braun; Albina Orlova; Karin Valegård; Ann-Christin Lindås; Gunnar F. Schröder; Edward H. Egelman

Significance Actin is one of the most abundant and highly conserved eukaryotic proteins, but the basis for the exquisite sequence conservation in actin is not known. In contrast, bacterial actin-like proteins display almost no sequence conservation and form very different filaments. We have examined the filaments formed by an actin-like protein in the third kingdom of life, Archaea, and although they only have a single strand, the strand is very similar to each of the two strands in actin. This gives previously unidentified insights into the divergence of archaea and eukaryotes. The prokaryotic origins of the actin cytoskeleton have been firmly established, but it has become clear that the bacterial actins form a wide variety of different filaments, different both from each other and from eukaryotic F-actin. We have used electron cryomicroscopy (cryo-EM) to examine the filaments formed by the protein crenactin (a crenarchaeal actin) from Pyrobaculum calidifontis, an organism that grows optimally at 90 °C. Although this protein only has ∼20% sequence identity with eukaryotic actin, phylogenetic analyses have placed it much closer to eukaryotic actin than any of the bacterial homologs. It has been assumed that the crenactin filament is double-stranded, like F-actin, in part because it would be hard to imagine how a single-stranded filament would be stable at such high temperatures. We show that not only is the crenactin filament single-stranded, but that it is remarkably similar to each of the two strands in F-actin. A large insertion in the crenactin sequence would prevent the formation of an F-actin-like double-stranded filament. Further, analysis of two existing crystal structures reveals six different subunit–subunit interfaces that are filament-like, but each is different from the others in terms of significant rotations. This variability in the subunit–subunit interface, seen at atomic resolution in crystals, can explain the large variability in the crenactin filaments observed by cryo-EM and helps to explain the variability in twist that has been observed for eukaryotic actin filaments.


BMC Genomics | 2016

The genome-scale DNA-binding profile of BarR, a β-alanine responsive transcription factor in the archaeon Sulfolobus acidocaldarius.

Han Liu; Kun Wang; Ann-Christin Lindås; Eveline Peeters

BackgroundThe Leucine-responsive Regulatory Protein (Lrp) family is a widespread family of regulatory transcription factors in prokaryotes. BarR is an Lrp-like transcription factor in the model archaeon Sulfolobus acidocaldarius that activates the expression of a β-alanine aminotransferase gene, which is involved in β-alanine degradation. In contrast to classical Lrp-like transcription factors, BarR is not responsive to any of the α-amino acids but interacts specifically with β-alanine. Besides the juxtaposed β-alanine aminotransferase gene, other regulatory targets of BarR have not yet been identified although β-alanine is the precursor of coenzyme A and thus an important central metabolite. The aim of this study is to extend the knowledge of the DNA-binding characteristics of BarR and of its corresponding regulon from a local to a genome-wide perspective.ResultsWe characterized the genome-wide binding profile of BarR using chromatin immunoprecipation combined with high-throughput sequencing (ChIP-seq). This revealed 21 genomic binding loci. High-enrichment binding regions were validated to interact with purified BarR protein in vitro using electrophoretic mobility shift assays and almost all targets were also shown to harbour a conserved semi-palindromic binding motif. Only a small subset of enriched genomic sites are located in intergenic regions at a relative short distance to a promoter, and qRT-PCR analysis demonstrated that only one additional operon is under activation of BarR, namely the glutamine synthase operon. The latter is also a target of other Lrp-like transcription factors. Detailed inspection of the BarR ChIP-seq profile at the β-alanine aminotransferase promoter region in combination with binding motif predictions indicate that the operator structure is more complicated than previously anticipated, consisting of multiple (major and auxiliary) operators.ConclusionsBarR has a limited regulon, and includes also glutamine synthase genes besides the previously characterized β-alanine aminotransferase. Regulation of glutamine synthase is suggestive of a link between β-alanine and α-amino acid metabolism in S. acidocaldarius. Furthermore, this work reveals that the BarR regulon overlaps with that of other Lrp-like regulators.


Archive | 2017

Archaeal Actin-Family Filament Systems

Ann-Christin Lindås; Karin Valegård; Thijs J. G. Ettema

Actin represents one of the most abundant and conserved eukaryotic proteins over time, and has an important role in many different cellular processes such as cell shape determination, motility, force generation, cytokinesis, amongst many others. Eukaryotic actin has been studied for decades and was for a long time considered a eukaryote-specific trait. However, in the early 2000s a bacterial actin homolog, MreB, was identified, characterized and found to have a cytoskeletal function and group within the superfamily of actin proteins. More recently, an actin cytoskeleton was also identified in archaea. The genome of the hyperthermophilic crenarchaeon Pyrobaculum calidifontis contains a five-gene cluster named Arcade encoding for an actin homolog, Crenactin, polymerizing into helical filaments spanning the whole length of the cell. Phylogenetic and structural studies place Crenactin closer to the eukaryotic actin than to the bacterial homologues. A significant difference, however, is that Crenactin can form single helical filaments in addition to filaments containing two intertwined proto filaments. The genome of the recently discovered Lokiarchaeota encodes several different actin homologues, termed Lokiactins, which are even more closely related to the eukaryotic actin than Crenactin. A primitive, dynamic actin-based cytoskeleton in archaea could have enabled the engulfment of the alphaproteobacterial progenitor of the mitochondria, a key-event in the evolution of eukaryotes.


Frontiers in Microbiology | 2018

The DNA Methylome of the Hyperthermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

Mohea Couturier; Ann-Christin Lindås

DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N6-methyl-adenine (m6A), N4-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.


bioRxiv | 2018

NanoJ: a high-performance open-source super-resolution microscopy toolbox

Romain Laine; Kalina Tosheva; Nils Gustafsson; Robert D. Gray; Pedro Almada; David Albrecht; Gabriel T. Risa; Fredrik Hurtig; Ann-Christin Lindås; Buzz Baum; Jason Mercer; Christophe Leterrier; Pedro Matos Pereira; Siân Culley; Ricardo Henriques

Super-resolution microscopy has become essential for the study of nanoscale biological processes. This type of imaging often requires the use of specialised image analysis tools to process a large volume of recorded data and extract quantitative information. In recent years, our team has built an open-source image analysis framework for super-resolution microscopy designed to combine high performance and ease of use. We named it NanoJ – a reference to the popular ImageJ software it was developed for. In this paper, we highlight the current capabilities of NanoJ for several essential processing steps: spatio-temporal alignment of raw data (NanoJ-Core), super-resolution image reconstruction (NanoJ-SRRF), image quality assessment (NanoJ-SQUIRREL), structural modelling (NanoJ-VirusMapper) and control of the sample environment (NanoJ-Fluidics). We expect to expand NanoJ in the future through the development of new tools designed to improve quantitative data analysis and measure the reliability of fluorescent microscopy studies.

Collaboration


Dive into the Ann-Christin Lindås's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders F. Andersson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Poplawski

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zvi Kelman

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge